
U.S. $8.99 (Canada $9.99)

ColdFusionJournal.com July 2001 Volume: 3 Issue: 7

CFDJ Feature: Maintaining Live Verity Collections 18

in a Clustered Environment Keeping live Verity data
indexed and accessible to multiple Web servers Jeremy Petersen & Dan Kison

Software Systems: Tracking Software Issues 22
Using the Web to collaborate on tracking issues David Keener

Custom Tags: User-Defined Functions in CF 5.0 26
Deciding between custom tags and user-defined functions Mike George

Data-Driven Pages: ‘Disappear’ from the 32

Invisible Web Your page hits are about to go way up Matt Robertson

CFDJ Feature: VTML by Example Part 2 36
How to successfully extend the CF Studio IDE Christian Schneider

Practical CF: CFContent with Images Use CFCONTENT 42
to secretly track readers of your e-mails Eron Cohen & Michael Smith

<BF> on <CF>: Be Extremely Graphic 44
ColdFusion 5.0 introduces a true graphing engine Ben Forta

Q&A
Bruce Van Horn page 50

First Look
Eron Cohen page 52

Journeyman ColdFusion
Charles Arehart page 48

Foundations
A Script for Teamwork

Hal Helms page 14

Editorial
It’s Time for Teams!
Robert Diamond page 5

Sept. 24–25, 2001 New York, NY

12

Oct. 22–25, 2001 Santa Clara, CA

55

Sept. 24–25, 2001 New York, NY

Oct. 24–25, 2001 Santa Clara, CA

2
0
0
1

COLDFUSIONfast track at JDJEDGE 2001

by Sarge Sargent page 6

53

KEVIN LYNCH JEREMY ALLAIRE BEN FORTA

CFPARAM NAME="attrib-
utes.n" DEFAULT="1">

<CFPARAM NAME="attrib-
utes.r_n" DEFAULT=

Listing 1

<CFQUERY
NAME="ItemDetail"
DATASOURCE="#MyDSN#">

SELECT

Listing 1

www.ColdFusionJournal.comCFDJ JULY2

ABLECOMMERCE
www.ablecommerce.com

www.ColdFusionJournal.com 3JULY CFDJ

ABLECOMMERCE
www.ablecommerce.com

CORDA TECHNOLOGIES
www.corda.com

www.ColdFusionJournal.com 5JULY CFDJ

I’m writing this month’s editorial myself, but if I wanted
to stay true to the focus of the issue, I’d be writing it with
a partner, or several. Collaboration is the name of the

game in the world of ColdFusion, and in the magazine
world as well. It’s a team that produces CFDJ, and with-
out them, you wouldn’t have a magazine. If it wasn’t
for our fantastic team of writers, editorial

staff, production designers, and advertising sales folks, we’d be
nowhere. Without them, you’d be lucky to receive a blank pile of
pages each month. With them all, however, we put together a fan-
tastic resource each month, one that we’re quite proud of, and one
that I hope you enjoy.

If you haven’t guessed yet, this month’s focus is on collaboration.
The thought of collaboration seems a simple one, but in this not-
utopian world we live in, it’s not always as easy as it seems. What mess-
es up the whole process? Why, people do, of course.

Collaboration is a hot topic these days; as the scale and diversity of
projects increase, the need for more knowledge does as well. This need
exists on several levels, ranging from small projects to the enterprise. As
demands for new site features increase, from Flash animations to mobile
access, many of us are using the resources and knowledge of others to help
put it all together. That’s by no means a knock on those who can do it all
themselves. Definitely the more you know, the better off you are, but no one
knows it all, and that’s why we’re here. It’s hard to specialize in everything
these days, and tapping the experience of someone else can often be an easy
way to reduce development headaches. I’m proud to say that I’ve taken
advantage of the assistance offered by others, and my development life has
been better and easier because of it. I’ve also gotten more sleep at night.

Now….onto some highlights of what the team here at CFDJ has in store
for you this month.

Hal Helms takes the bird’s-eye view of working together in the modern
world. E-mail, instant messenger, and the like are all fantastic tools with
one problem…they’re being used by people! He’s got some great tips, tricks,
and stories about creating a “Program Definition Language” to get you out
of the bind. It’s definitely worth a read and, of course, is Fusebox-related as
well. If you aren’t using Fusebox yet – you should be.

David Keener has written on tracking software issues – using the Web to
collaborate on the always tricky art of gathering and fixing bugs in your
projects. Along with source code, he provides the schema for making a SQL
server–based front-end for tracking issues with your masterpiece in
progress. Moving down from a top-level page to projects and issues, with
forms for entering all the necessary information, it’s an end-to-end solu-
tion. If you’re building software or working on large projects, especially in a
team, you won’t regret setting one of these up. It’s the easiest way to make
sure that everyone is on the same page.

Sarge Sargent, who has conveniently (for us at least) traveled near and far to
ColdFusion developers around the globe, hits on all the major issues.
Experienced from his days at WashingtonPost.com, and several other major pro-
jects, he discusses a fantastic development method that I highly recommend.

Also, we’ve got lots of other articles, from Master Guru Ben
Forta and others, that look at utilizing the new features in CF
5.0. Enjoy!

It’s Time for Teams!
BY ROBERT DIAMOND

ROBERT@SYS-CON.COM

EDITORIAL

ABOUT THE
AUTHOR
Robert Diamond is
editor-in-chief of
ColdFusion Developer’s
Journal as well as
SYS-CON’s newest
magazine, Wireless
Business & Technology.
Named one of the “Top
thirty magazine industry
executives under the age
of 30” in Folio magazine’s
November 2000 issue,
Robert recently graduated
from the School of
Information Studies at
Syracuse University.

international
advisory board

Jeremy Allaire, CTO, macromedia, inc.
Charles Arehart, CTO, systemanage

Michael Dinowitz, house of fusion, fusion authority
Steve Drucker, CEO, fig leaf software

Ben Forta, products, macromedia
Hal Helms, training, team allaire

Kevin Lynch, president, macromedia products
Karl Moss, principal software developer, macromedia

Ajit Sagar, editor-in-chief, XML journal
Michael Smith, president, terratech

Bruce Van Horn, president, netsite dynamics, LLC

department editors
editor-in-chief

Robert Diamond robert@sys-con.com

vice president, production
Jim Morgan jim@sys-con.com

executive editor
M’lou Pinkham mpinkham@sys-con.com

managing editor
Cheryl Van Sise cheryl@sys-con.com

editor
Nancy Valentine nancy@sys-con.com

associate editor
Jamie Matusow jamie@sys-con.com

associate editor
Gail Schultz gail@sys-con.com

associate editor
Brenda Greene brenda@sys-con.com

assistant editor
Gregory Ludwig greg@sys-con.com

product review editor
Tom Taulli

tips & techniques editor
Matt Newberry

writers in this issue
Charles Arehart, Eron Cohen, Robert Diamond, Ben Forta,

Mike George, Hal Helms, David Keener, Dan Kison,
Jeremy Peterson, Matt Robertson, Sarge Sargent,

Christian Schneider, Michael Smith, Bruce Van Horn

subscriptions:
For subscription requests please call

1 800 513-7111 or go to: www.sys-con.com
domestic $89.99/yr. (12 issues)

canada/mexico $99/yr
overseas $129/yr

back issues $12 U.S. $15 all other

editorial offices: SYS-CON MEDIA, INC.
135 Chestnut Ridge Rd., Montvale, NJ 07645
Telephone: 201 802-3000 Fax: 201 782-9600

COLDFUSION DEVELOPER’S JOURNAL (ISSN #1523-9101)
is published monthly (12 times a year)

for $89.99 by SYS-CON Publications, Inc.,
135 Chestnut Ridge Rd.,Montvale, NJ 07645

postmaster: send address changes to:
COLDFUSION DEVELOPER’S JOURNAL

SYS-CON MEDIA
135 Chestnut Ridge Rd.,Montvale, NJ 07645

copyright © 2001 by SYS-CON MEDIA
All rights reserved. No part of this publication may
be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopy
or any information storage and retrieval system,

without written permission.

For promotional reprints, contact reprint coordinator:
Christine Russell christine@sys-con.com

SYS-CON PUBLICATIONS, INC., reserves the right to revise, republish,
and authorize its readers to use the articles submitted for publication.

worldwide distribution:
by Curtis Circulation Company

730 River Road, New Milford, NJ 07646-3048

distribution in USA:
by International Periodical Distributors

674 Via De La Valle, Suite 204, Solana Beach, CA 92075
Phone: 619 481-5928

All brand and product names used on these pages are trade names,
service marks, or trademarks of their respective companies.

platform, and contains a frozen copy of the pro-
duction code and database. This provides backup
systems for disaster recovery, allowing full code
migration to production, and extra resources to
scale the site during unexpected load hikes.

It seems common sense to divide your develop-
ment life cycle – at a minimum – into the develop-
ment and production phases. However, you would
be surprised – or maybe you wouldn’t – at how
many sites develop and modify code on produc-
tion servers, data, and source code.

Again, good practice is to code and test func-
tionality in development, and then migrate this
functionality to a staging area for QA and/or UAT.
Once approved, this code base should be frozen –
then pushed to production. We never, ever want to
modify production code! And code should never
move from production to development – code
should be copied from the staging server to devel-
opment for code revisions. Let’s not continue to
bemoan such sites but rather proceed in breaking
down the ideal development environment archi-
tecture.

and have let CF lead them to the mountaintop.
And then there are those shops filled with develop-
ers who swear they are top-notch but don’t really
have a clue as to when not to use pound signs.

But even those shops at the high end of the CF
development spectrum can have environments
that are not conducive to good coding practices.
Managers, as well as developers, need to under-
stand the crucial aspects of the development envi-
ronment: team, architecture, and methodology.
This article is an attempt to level the playing field,
so that even the worst coders are in an environ-
ment that will help elevate their game.

Architecture
Although an understanding of the development

process is fundamental to successful Web develop-
ment, that discussion is beyond this article’s scope.
Rather, my focus is on facilitating this process.
Rudimentary to this facilitation are the provision
and protection of three distinct environmental
areas: development, testing/staging, and produc-
tion. Obviously, this article focuses on develop-

ment, but it is important to stress the staging –
which can be broken down further into quality
assurance (QA) and user acceptance testing (UAT) –
and production areas.

You should stage all good production code
before going live. I learned this fundamental precept
in the early days at WashingtonPost.com, where
our access actually included storyboarding, devel-
opment, staging, and production.

The staging/testing/QA server provides a plat-
form to make necessary code revisions without
touching “live” code. Following good principles,
the staging server platform mirrors the production

I
’ve been out of the hard-core development
team dynamic for more than a year now, so I
was a little hesitant when CFDJ approached
me about writing this article. Nevertheless, I

have traveled to various ColdFusion shops around
the globe and worked with numerous development
teams.

The majority of these shops have a tight-knit
group of developers, who eat and sleep CF and Web
development. Others have one or two developers
who happen to have heard about a cool technolo-
gy that allows integration with powerful back-end
systems with an easy-to-use, tag-based language,

www.ColdFusionJournal.comCFDJ JULY6

OPTIMAL DEVELOPMENT
ENVIRONMENT

Working together in CF

CFDJ FEATURE

BY SARGE SARGENT

The Development Server
The first step in achieving the optimal

development environment is dedication:
management must make the necessary
expenditures for dedicated resources –
human, hardware, and software. The
development team and their IDEs are
only part of this environment. (We will
cover those later in the article.) For now,
let’s focus on the development server.

The ideal development platform will
completely mirror the production architec-
ture but usually on a single box. Say your

production environment includes three
systems: two Compaq 1850R servers run-
ning Windows 2000 Server, IIS 5, and CF 5,
and a Compaq 3000 running Windows 2000
Server and SQL Server 2000. Then your
development server should be a Compaq
1850R running Windows 2000 Server, IIS 5,
CF 5, SQL Server 2000, and some source
control software. (We will cover source con-
trol in a minute.) Some small shops can
only budget for a small development serv-
er, but even a desktop HP system should be
adequate for these shops.

Nevertheless, if budget permits, align
the development systems parallel to pro-
duction. This provides your developers
with a simulated production playground,
and provides extra machines for swapping
in the event of catastrophic hardware or
system failures. Mirroring the production
architecture in development also helps
eliminate hardware as a possible source for
bottlenecks – and we all debug our code
and eliminate bottlenecks, don’t we?

Please refrain from implementing a
Windows-based development environ-

www.ColdFusionJournal.com 7JULY CFDJ

“What’s more debilitating and frustrating to a
developer or graphic artist than having to be

creative on a slow, antiquated machine?”

ment for a Solaris production environ-
ment. If you realize most Web develop-
ment tools are Windows-based, these
only need to reside on your developers’
desktops. So if your production system is
a Solaris or Linux solution, your develop-
ment system(s) should be also. Your
developers’ desktops should be the only
Windows systems in the environment.

The Developer Desktop
What’s more debilitating and frustrating

to a developer or graphic artist than having
to be creative on a slow, antiquated
machine? In a perfect world, each develop-
er and/or artist would have a fast, powerful
desktop machine with the fastest available
processor, ample RAM, and hard-drive
space. For CF developers, this machine
should not only include a licensed copy of
CF Studio, but it should also be a miniver-
sion of the production system.

This means each developer should be
working with a local copy of the production
source and data. In my last development

team, each developer had his or her
own copy of CF Studio, a CF server, a
Web server, and a local copy of the
database. The single-user edition of
CF Enterprise that’s bundled on the
CF Studio CD is provided for devel-
opment purposes. Developers can
integrate this with Peer Web Services
on their desktops and code against
Microsoft SQL Server 2000 Personal
Edition. The Personal Edition comes
with both the Standard and
Enterprise editions and is not sold
separately. It is powerful enough for
desktop development.

Obviously, if you have an Oracle
shop, you’ll want Oracle’s developer
editions – you want to keep your
development, staging, and produc-
tion environments as homoge-
neous as possible.

This configuration is ideal
because the developers can work
independently on local copies of
source code and data instead of
trampling one another on the devel-
opment server, or worse, contami-
nating your production database. In
order to do this properly, protect the

code on the development server with
enterprise-level version control software.

Most small shops use freeware versions,
such as GNU SCCS (www.gnu.org) and
ComponentSoftware’s CVS (www.compo-
nentsoftware.com). Larger players in the
change management or version control
space are Perforce P4 (www.perforce.com),
Merant PVCS (www.merant.com/prod-
ucts/pvcs/), Starbase StarTeam (www.star-
base.com/products/starteam/), and Micro-
soft Visual SourceSafe (http://msdn.micro-
soft.com/ssafe/). Although I have encoun-
tered Visual SourceSafe at most of the
shops I have visited, more CF shops are
turning to PVCS solutions.

The key features for change manage-
ment are versioning, document compari-
son and merge, rollback, and deploy-
ment. Integration with your IDE, or inte-
grated development environment, is a
plus that will help win over your develop-
ers – and winning them over is just what
you’ll have to do if you have not already
implemented a version control solution.

Whichever change management system
you deploy, the client software must make
its use relatively easy in order for develop-
ers to consistently use it.

Frameworks and Methodology
Application frameworks and coding

methodology coincides with change man-
agement and source control. Developers
need good application frameworks to form
a solid structure within which to properly
code cohesive sites. CF has its own
Application Framework instantiated with
Application.cfm and OnRequestEnd.cfm;
but this framework is really a building
block for focusing on Session and Client
variable management and some rudimen-
tary application-level security. It does not
address the larger, more prevalent issues of
code reuse and symmetry, teamwork effi-
ciency and productivity, commenting and
documentation, and so on.

Furthermore, a sound application
framework provides some base functionali-
ty fundamental to the site. This fosters code
reuse, as developers can focus on retooling
or customizing that piece of functionality
instead of reinventing the wheel each time.

Methodologies provide guidelines for
coding the application structure. A
methodology is composed of standards.
It dictates how to code the site or applica-
tion so that your code is legible, manage-
able, and reusable. A good methodology
reads easily and is documented thor-
oughly. It is stern enough to keep devel-
opers focused, yet flexible enough to
allow developers to grow as they learn.

Application framework and method-
ology are essential to good rapid applica-
tion development. However, most shops
are guilty of coding without one or both.

A Familiar Scenario
You’re an IT or Web shop manager of a

team of three Web developers. Your team
is pretty strong in fundamental CFML
and quickly grasping the advanced con-
cepts. Now you have the opportunity to
hire what you perceive is a hotshot.
You’ve heard this developer’s name all
over the CFUG meetings and you leap at
the opportunity to enhance your staff.

This developer comes on board and
right away begins to affect the team.
However, instead of leaving his bags (bad
coding habits) at the door, he starts litter-
ing your source code with his own unique
indentation style, his own custom tags,
and so forth. The code he writes is
advanced stuff, but he neglected to com-
ment the code, so your other team mem-
bers cannot learn by his examples, debug
his code, or make any editions without
his hand-holding. What should you do?

www.ColdFusionJournal.comCFDJ JULY8

“In a perfect world, each developer and/or artist would have a
fast, powerful desktop machine with the fastest available

processor, ample RAM, and hard-drive space. For CF developers,
this machine should not only include a licensed copy of CF Studio,

but it should also be a miniversion of the production system”

www.ColdFusionJournal.com 9JULY CFDJ

The Other Side of the Story
You are the hired gun, and, upon walk-

ing into the place, you notice their staff is
still coding at the CF 3.11 level – their
code is full of pound signs, needlessly
complex syntax, and deprecated tags.
You remain humble, sit in your cubicle,
and begin to do your thing. Your tasks are
simple and the coding is basic – to you.
You are pleased with your work so far, but
at the next monthly meeting, you are
reamed for your nonstandard methods
and lack of comments, and accused of
changing the entire application. Do you
leave or stay?

A Slightly Different Scenario
Again, same setup as the first scenario,

you’re this same IT or Web shop manager
of three. You decide to send your hungri-
est developer to a local Advanced
ColdFusion Development course, figuring
she will be able to pass the lessons on to
the rest of the staff. Instead, she takes
what she has learned and finishes the next
major application revision with advanced
methods. However, she now realizes her
increased marketability, and serves you
notice in lieu of a more lucrative position.
She leaves without sharing her onion or
documenting the code enhancements she
just made. Now what do you do?

There are numerous scenarios to spin
through, but I think the point is now obvi-
ous. A good application framework and
methodology could have remedied all
three scenarios. A sound application
framework and clear, well-documented
methodology would have facilitated the
hired gun’s adjustment to the team
dynamic. Certainly some of his coding
style could have enhanced the frame-
work, providing impetus for upgrading
the current methodology.

In the case of the hungry developer,
providing good documentation for every
code revision or even mandating a com-
ment section at the head of each template
as part of the coding methodology would
allay this situation. If the developer jumps
ship, then the rest of the team doesn’t
have to remain in the dark. The knowl-
edge transfer has already taken place.

Where should shops turn for an appli-
cation framework and/or methodology?
iiFramework (www.iiframework.com) is a
popular CF application framework.
Other object-oriented CF application
frameworks include SmartObjects (www.-
smartobjects.com) and cfObjects (www.-
cfobjects.com). Fusebox (www.fusebox.org)
is the most popular CF methodology.
Spectra is Macromedia’s answer to the CF
application framework and methodology
paradigm. (Many readers are aware that
version 1.5.1 is the last feature-additive
release of Spectra as the core compo-
nents are being melded into the next
major release of the CF server.) Each of
these has its share of strong points and
shortcomings.

Patrick Steil does a great job compar-
ing Fusebox, Allaire Spectra, and iiFrame-
work in his article, “Rad++➔ Propel Your
ColdFusion Project with Application
Frameworks” in CFDJ (Vol. 2, issue 11).
See Benjamin Pate’s “Introducing Smart-
Objects: Build Extendable, Reusable,
Object-Based Components Using CFML,”
article in CFDJ (Vol. 2, issue 8) for an
object-oriented CF framework primer.

The Weakest Link
The most important part of the devel-

opment environment is the team dynamic.

Like the proverbial chain, a development
team is only as strong as its weakest devel-
oper. That said, the importance of a Web
development team composed of techni-
cally sound individuals cannot be over-
emphasized. There are three key members
of the Web development team: Web/CF
developer, graphic, and database.

At a minimum, a good Web developer
today is well versed in HTML 4, Dynamic
HTML (DHTML), Cascading Style Sheets
(CSS), and ANSI-SQL. It is not enough to
simply know about deprecated tags, such
as the FONT tag, but in knowing how to
correctly code cross-browser, inline style
syntax is fundamental.

A strong Web developer has mastered
complex DHTML and JavaScript routines
– having built a vast library of eye-catch-
ing mouseovers, flying layers, and so on –
and possesses some fundamentals of
server-side languages such as CFML,
ASP, JSP, and Java.

The complete Web developer is one
who not only has mastered all of the
above prerequisites, but whose lunch pail
also includes the full Web development
smorgasbord and Internet alphabet soup:
XML\XHTML,WAP\CHTML\I-Mode,
LDAP, SSL, and so forth.

Building upon that weak link, the con-
summate CF developer has mastered all of
Ben Forta’s tips and tricks, understands
the complexities of structures and WDDX
(Web Distributed Data Exchange) packets,
and understands the intricacies of
advanced caching techniques, load distri-
bution, and session management. The
well-rounded CF developer contributes to
the community by actively participating in
local ColdFusion Users Groups (CFUG).

The CF developer is the MVP of the
development team, so it would behoove the
good IT manager to have several MVP can-
didates on the team. To ensure MVP status,
Macromedia has developed two certifica-
tion offerings as part of its Macromedia
Certified Professional Program (MMCP):
Certified ColdFusion Developer and
Certified Web Site Developer.

For a complete listing of CFUGs, visit the
Allaire Web site at http://devex.allaire.com/
developer/usergroups/; for more informa-

“This developer comes on board and right away begins to affect the team. However,
instead of leaving his bags (bad coding habits) at the door, he starts littering your

source code with his own unique indentation style, his own custom tags, and
so forth. The code he writes is advanced stuff, but he neglected to comment the

code, so your other team members cannot learn by his examples, debug his code,
or make any editions without his hand-holding. What should you do?”

tion on WDDX see www.-openwddx.org/;
for more information on ACP, see www.-
allaire.com/services/training/certifica-
tion/index.cfm.

The final team members are the
graphic artist and database administra-
tor. Typically, the CF developer fills one or
both of these roles as well, however, the
team will function more productively if
each member focuses on the area of his
or her specialty in designing/developing
the site or application. A great number of
CF developers can animate images in
tools like Macromedia Fireworks or crop
photos with Adobe Photoshop. However,
there is no substitute for a true graphic
designer who can take an idea from char-
coal and sketchpad to full-length Flash
animation in a few hours.

Likewise, there is no substitute for a
good DBA to manage your database. For
dynamic Web applications, nothing is as

vital and volatile as the data in
the database. It is indeed the
backbone and life of the appli-
cation. Take it from a former
CF Developer/SQL Server DBA,
you don’t want your CF devel-
oper writing code and worrying
about Database Maintenance
Plans, truncating logs, proper
replication scenarios, or any
other DBA functions.

We have a saying in the industry: “Let
the Database and Web Server do their
jobs, and let ColdFusion do its.” The same
goes for the development team – let each
member do his or her job and focus on his
or her specialty. However, separation of
power does not equal segregation of force.
Dividing the Web team along duty lines is
not a call to build up walls, put on blind-
ers, or break the lines of communication.

Communication is the key to success
in any relationship – Web development
is no different. Part of letting the data-
base do its job is the CF developer asking
the DBA to create a stored procedure on
the database to replace a long-running
query.

Tools of the Trade
The key to rapid application develop-

ment is accessibility to tools that help you
effectively build and deploy powerful, high-
end applications quickly. There are a myri-
ad of Web development tools, or integrated
development environments (IDE), and
graphic suites out there to help attain this
goal. I started my Web development career
with Notepad, then moved on to Kenn
Nesbitt’s WebEdit, and Nick Bradbury’s
HomeSite – acquired by Allaire in 1996.

Today, the industry is crowded with
good WYSIWYG editors, such as Micro-
soft’s FrontPage 2000 and Adobe’s GoLive.
I won’t even go into the numerous Java
IDEs. (Sorry, I did not intend this to be a
biased product review, but there are real-
ly only two IDE choices for serious CF
development: UltraDev and Studio.)

When it comes to graphics, artists usu-
ally pick their poison and stick with it.

Adobe Photoshop (www.adobe.com/prod-
ucts/photoshop/main.html) continues to
be the industry standard for traditional
graphics and photo retouching, shadowed
by CorelDraw 10 Graphics Suite (www3.-
c o r e l . c o m / c g i - b i n / g x . c g i / A p p -
Logic+FTContentServer?pagename=Core
l/Product/Details&id=CC1IOY1YKCC),
Ulead PhotoImpact (www.-ulead.com/pi/-
runme.htm), and Macromedia Freehand
(www.macromedia.com/software/free-
hand/). Macromedia’s Fireworks 4 (www.-
macromedia.com/software/fireworks/)
has become the favorite among Web
developers for Web graphics creation, ani-
mation, optimization, and integration.

Macromedia solidified its spot atop
the IDE market with the release of its

Dreamweaver UltraDev. UltraDev takes
Dreamweaver to the edge by comple-
menting the robust Web design engine
with support for such data-driven lan-
guages as CF, ASP, and JSP. UltraDev inte-
grates with ColdFusion Studio to provide
an unparalleled combination of data-
base and debugging tools – and visual
development environment to help
rapidly design and deliver powerful
applications.

For traditional CF development,
ColdFusion Studio is the best – hands
down! ColdFusion Studio is the de
facto CF IDE – pardon the pun. Allaire
built Studio on its award-winning
HomeSite HTML editor and added fea-
tures such as full CFML (ColdFusion
Markup Language) support, Remote
Data Services, a CSS editor, and Source
Code Control support. Studio’s Project
metaphor integrates with any Microsoft
Source Code Control (SCC) API-compli-
ant versioning software to help facilitate
team coordination on all applications:
simple or complex. Again, Macromedia
has done a great job of integrating its
leading tools – Studio for CF develop-
ment, UltraDev for visual development
– into one sweet package, ColdFusion
4.5 UltraDev 4 Studio.

As I said, CF Studio is my tool of choice
for CF development. However, I am increas-
ingly finding Dreamweaver UltraDev and
Fireworks on more developer’s desktops,
and Photoshop on graphic artists’ Macs,
at each shop I visit.

Conclusion
The optimum CF development envi-

ronment has dedicated human, hard-
ware, and software resources. Developers
use industry-leading IDEs to develop
against local resources and within a version-
ing system on the dedicated development
server. The staging server gets a copy of
this code base for testing, where it is
frozen upon acceptance for migration to
production.

Your job as an IT or Web shop manager
is to make this development environment
conducive to your developers’ efforts.
Your job as CF developers is to use stan-
dards-based methodologies within appli-
cation frameworks to help facilitate the
rapid application development process.

About the Author
Sarge is a senior consultant and practice manager
with CF Services with Macromedia Consulting Services.
He has been coding advanced applications in CF since
version 2.0.

“The key to rapid application

development is accessibility to

tools that help you effectively

build and deploy powerful, high-

end applications quickly”

www.ColdFusionJournal.comCFDJ JULY10

ssargent@macromedia.com

www.ColdFusionJournal.com 11JULY CFDJ

CFDYNAMICS
www.cfdynamics.com

COLDFUSION EDGE 2001, FAST TRAC

Prepare for ColdFusion Certification Exam with
Comprehensive Technical Sessions designed for
Beginner and Advanced ColdFusion Developers

S e s s i o n T o p i c s i n c l u d e :

Plan
to

Attend

The ONLY ColdFusion Event Backed by
the Power of and

Save the Dates

Ke
vin

Ly
nc

h

Kevin Lynch is president of Macromedia Products.
He joined Macromedia in 1996 and has been
instrumental in forming its Web strategy. As
president of products, Kevin is responsible for
developing Macromedia’s award-winning family
of software and solutions.

Be
n

Fo
rta

As Chief Technology Officer, Jeremy is
instrumental in guiding Macromedia's
product direction and is the company's
primary technology evangelist, responsible
for establishing key strategic partnerships
within the Internet industry. Jeremy was the
founder and former chief technology officer
for Allaire Corporation, which merged with
Macromedia in March 2001.

Ben Forta is Allaire Corporation’s product evangelist for
the ColdFusion product line. He is the author of the
best-selling ColdFusion 4.0 Web Application Construction
Kit and its sequel, Advanced ColdFusion 4.0
Development, as well as Allaire Spectra E-Business
Construction Kit and Sams Teach Yourself SQL in 10
Minutes. He recently released WAP Development with
WML and WMLScript.

Je
re

m
y

A
lla

ire

Prepare for ColdFusion Certification

REGISTER
ONLINE
TODAY!

JOURNAL

• Web Fundamentals

• Application Development

• Database Concepts

• Client State Management

• Troubleshooting, and
a special focus on
ColdFusion 5.0.

Save
$300
Save
$300

MEETING BUSINESS CHALLENGES WITH XML
CK FOR COLDFUSION CERTIFICATION

NEITHER SYS-CON MEDIA NOR SYS-CON EVENTS, INC., ARE

SPONSORS OF, OR ARE AFFILIATED IN ANY WAY WITH, CAMELOT

COMMUNICATIONS, INC., OR ANY EVENTS PRODUCED BY

CAMELOT COMMUNICATIONS, INC.JAVA AND JAVA-BASED

MARKS ARE TRADEMARKS OR REGISTERED TRADEMARKS OF SUN

MICROSYSTEMS, INC., IN THE UNITED STATES AND OTHER COUN-

TRIES. SYS-CON PUBLICATIONS AND SYS-CON EVENTS ARE INDE-

PENDENT OF SUN MICROSYSTEMS.

Hilton New York, New York City

• ColdFusion 5.0

• Cross browser support

• Browser/server interactions

• HTML standards related to
ColdFusion

• Variables and scoping

• Looping

• Functions

• <CFTAGS>

• Conditional processing

• Custom Tags

• Arrays and their usage

• Dimensions

• CFSCRIPT possibilities
and limitations

• Structures

• Passing structures into
custom tags

• Variable scopes

• Combining complex variables

• Upload files

• MIME types

• Append/Retrieve/Download

• <CFCONTENT>

• Creating agents

• Tags and parameters

• CF HTTP

• Syndication

• WDDX

• Parameterizing

• Data-parsing techniques

• HTTP header information

• Exception handling

Database interactions

• Stored procedures

• CF transaction
management

• Bind
parameters

• SQL queries

• Joining tables

• Grouping data
output

• Handling nulls

• Database manipulation

• Caching queries

• Application.CFM

• Cookies

• Client variables

• Session variables

• Application variables

• Server variables

• Storage locations

• Debugging

A Preliminary Glance at Topics

fasttrack Program

24-25 2001
SEPTEMBER

Owned and Produced by

135 Chestnut Ridge Road

Montvale, NJ 07645

(201) 802-3069

Fax: (201) 782-9051

visit

WWW.SYS-CON.COM/COLDFUSIONEDGE
for more information

Call
201 802-3004 to reserve exhibit space

today!

www.ColdFusionJournal.com

There are many types of collabo-
ration, of course, and this month I’d
like to talk about distributed team
development with ColdFusion.

I was first introduced to this idea
by a former boss of mine, who,
under cost-cutting pressures, decid-
ed that working remotely had the
decided benefit of him not paying
for office space and, with no more
effort than pushing the “Send” but-
ton on his e-mail, remote working
was the new “new thing.”

Soon we had people in Georgia,
Florida, California, and Missouri all
(apparently) working together seam-
lessly! I say “apparently” because to
the nonmanagerial eye, it looked like
a complete mess, but my boss sent
glowing reports along to the compa-
ny president touting our success as
remote workers.

Much had been said about tele-
conferencing, high-speed Internet
access and the like, but somehow
those niceties were never imple-
mented. No matter, we just kept on
remotely working – right up until
the point that the company presi-
dent decided to speak with some of
his remote workers and heard a
decidedly different story.

Before long, we had a new boss,
many of the remote workers were
let go, and the idea of remote work-
ing was now the “old thing.” It was
back to fighting traffic to get to the
office on time.

It seemed to me this was a missed
opportunity. Since that experience,
I’ve tried to see how distributed
team development could be made a
reality. In speaking with others, it
turned out that the situation at my
old company was not such an
uncommon scenario. From all cor-
ners, good intentions were being
negated by bad communication.

Whatever else can be said about it,
warm bodies congregating together in
a small space does promote commu-
nication. Naturally, much of it is not
germane to the work to be done, but
we are all used to this. For the most
part, we are willing to accept that
admitted inefficiency of office chatter.
It’s a small price to pay for the informal
communication network that forms
the backbone by which information is
shared in most corporations.

Most often, the attempts to
improve communication center on
trying to reestablish the informal
communication network to function
remotely. This takes the shape of
companies paying for extra phone
lines, DSL access, telephone head-
sets, and fax machines – as well as
pushing remote workers to pay more
attention to their e-mail and/or
instant messaging. Just last week I
heard about a particularly valuable
employee who wanted to work
remotely; his company responded by
having a T-1 line run to his house!

Sometimes this works. Still, an
awful lot of time is wasted waiting for
a colleague to respond via instant
messenger (you don’t know it, but she
just got up to make some tea) – and
we’re all familiar with how much time
e-mail can waste. I think we make a
fundamental mistake when we try to
“virtualize” the experience of bump-
ing into someone on the way to the
watercooler or overhearing a col-
league in a cubicle next to ours.

Albert Einstein once tried explain-
ing the idea of a wireless telegraph:

“The wireless telegraph is not
difficult to understand. The ordi-
nary telegraph is like a very long cat.
You pull the tail in New York, and it
meows in Los Angeles. The wireless
is the same, only without the cat.”

Something similar might be said

about virtual watercooler conversa-
tions. We need a better plan for devel-
oping software remotely – without the
watercooler – one that recognizes that
the communication medium appro-
priate to physical proximity may not
be the same for remote teaming.

I think we have good examples of
people having solved this problem
all around us. When you plug your
laptop into the wall, you take it for
granted that the plug will fit the
socket. This happens because a
specification was established on the
interface between a 110-volt electri-
cal appliance and the electricity grid
that powers our homes and build-
ings. Such a specification lets manu-
facturers of different products com-
municate – without the watercooler.

Manufacturers may have specifi-
cations that allow them to turn out
huge volumes of their product with
confidence that it will interoperate
with others. In software develop-
ment, however, we have no such
thing. The situation is much more
analogous to musket making prior
to the invention by Eli Whitney of
standardized parts – each product
is a unique work of its craftsman–
creator; any interoperability between
parts is coincidental.

In software this situation arises
because we often design as we code.
We don’t lay down a specification
because we don’t know what that
specification is beforehand. Putting
the best face on it, it “evolves” as the
project moves along.

I find this to be a singularly bad
idea – one whose only virtue is that
we’re all too familiar with this
“methodology.” Because I wanted to
be able to work remotely, I have
worked hard to build capabilities for
remote teaming into Fusebox. Along
the way, I’ve tried to assemble some of

BY
HAL

HELMS In this issue of CFDJ, the editors are
looking at the subject of collaboration
and ColdFusion.

A Script for Teamwork

FOUNDATIONS

We need a better plan for developing
software remotely

CFDJ JULY14

www.ColdFusionJournal.com 15JULY CFDJ

CODECHARGE
www.codecharge.com

www.ColdFusionJournal.com

FOUNDATIONS

the best practices of developers to cre-
ate a system that would allow me to
have consistently successful projects.

The result of that work, which I’ve
called Extended Fusebox (or XFB for
short), lays out how an integrated
application methodology that
begins with wireframes ends with
acceptance testing. Over the last two
years of using XFB, I’ve done a num-
ber of development jobs remotely. I
have one client for whom I’ve done
quite a bit of work (including a fully
functional e-commerce site) who
I’ve never met in person. I’ve found
that success in remote working is
achieved not by trying to reproduce
a physical environment remotely
but in having clear, understandable,
simple specifications.

Knowing what I’m going to build
before I build just seems to work bet-
ter! And this happens only when I use
things like wireframes and prototypes
to help the client see what it is that
they want. As I’ve said many times, it
came as a revelation to me that
clients weren’t telling me what they
wanted in requirements-gathering
meetings because they didn’t know
what they wanted – until they saw it.

I know of no better way than Web
prototyping to let clients “see it”
before the code is written. This is par-
ticularly effective as, to most clients,
the interface – the prototype – is the
application. With a prototype, you’ll
finally get the feedback that usually
doesn’t surface until you deliver the
application. If you use my DevNotes
code, you’ll be able to communicate
with clients and developers remotely
while having a central repository for
these communications.

So far, so good. Clients and pro-
ject managers can work remotely
using the Web to determine what
will be built. But it’s developers who
will write the code to turn the pro-
totype into reality. We won’t be suc-
cessful in remote teaming unless we
can find a way to incorporate
remote developers into our process.

I’ve found the first step in
achieving this is architecting the
program. Since I use XFB as my
methodology, my architecture will
reflect this Fusebox-centric view of
the world. You may use some other
methodology – or you may have
your own, unstated one. Whichever
method works for you, I find archi-

tecting the program is essential.
In my experience with large-

scale, complex Web applications,
decisions need to be made at a
global level about modules, vari-
ables, and responsibilities – yet I
know many developers whose idea
of architecture is designing the
database. The rest of the architec-
ture is left to the coders to figure
out. But from my observations, that
laissez-faire approach sets coders –
and the project – up for failure.

I would certainly not recommend
that approach for a remote teaming
environment. Instead I have found
success in giving coders clear, explic-
it guidance in the form of what is
sometimes called a program defini-
tion language (PDL), which forms a
sort of contract (not the legal kind,
thankfully) between the architect
and the coder. The architect, in
effect, says to the coder, “You fulfill
this contract for this specific bit of
code and I’ll worry about the inte-
gration with the rest of the program.”

Of course, you would only take
such a position if you had confi-
dence in your architecture, but if
you do, creating a PDL for coders to
deliver on is remarkably effective.
Coders, free of the nagging ques-
tions about how this particular line
of code will affect the others in the
program, are able to turn out clean,
precise code. After all, it’s seldom
the problem of finding the correct
syntax that slows down program-
ming. Rather it’s all the “what if”
questions that are (to coders at
least) like weights to a runner.

As the project becomes more
involved, there are more of these
what-if questions – more weights –
and the project bogs down. This
leads to the almost universal experi-

ence of writing software: the first 90%
takes three months and the final 10%
takes an additional three months.

Having a PDL (I use Fusedoc, which
I created just for this purpose) can
transform the experience for both
coder and manager. The manager,
having created an application architec-
ture and translated this into PDLs for
individual files, can give these to any
number of programmers to complete.
My design goal in creating Fusedoc
was that any competent ColdFusion
programmer should be able to com-
plete the code file without knowing
anything more about either the appli-
cation or the underlying database.

This may seem to border on
insanity. I recently came across a
quote by Neils Bohr, the Danish
physicist who was at the heart of so
many discoveries in that wacky
world of quantum physics, that
seemed to put it best: “We all agree
that your theory is crazy. The ques-
tion is, ‘Is it crazy enough?’” Let me
relate an experience of remote
teaming and you be the judge of
whether the theory is crazy enough.

The job was an e-commerce site
for a large technology company in
California. My client was an inde-
pendent project manager in
Boston. I was working in Atlanta.
When my client was awarded the
job, it was with the proviso that the
job be done in one month.

“You what?” I sputtered. “How
are you going to do that?”

“Well, actually, Hal, that’s why
I’m calling you…”

It was clear to me that we had only
one chance for success – there just
wasn’t any time for recoding because
we hadn’t quite understood the client
– or because the client had never
made clear what they wanted.

“I want you to spend three weeks
on the prototype,” I told my client.
You can probably imagine his reac-
tion, but he was intrigued enough to
hear more. “This project won’t fail
because we can’t figure out how to
implement security, or get credit card
approvals, or keep customers in our
database,” I told him. “If it fails, it will
be because we didn’t deliver what the
client wanted – and the only way we
can find out what they want is to
deliver it to them: thus, the prototype.

“But here’s the thing: the proto-
type has to look exactly like the fin-

CFDJ JULY16

www.ColdFusionJournal.com 17JULY CFDJ

ished product – no variations at all.
If there are, you’ve given your client
wiggle room and we’ll never get
agreement on acceptance testing.
The prototype you’re doing has to
form the basis for acceptance test-
ing – so you’ve got to get it right.”

He did a tremendous job. When I
got the prototype from him, it
looked exactly like a real applica-
tion. (In fact, he had some trouble
convincing his client that it wasn’t
the real application!) My job was
then to turn that prototype into an
application architecture that would
hold up under stress – both the
stress of many simultaneous users
and the stress that would surely
come later when the client needed
to maintain it.

Once this was done, I wrote
Fusedocs for the individual code
files that the architecture portion
had identified. I had just over four
days left to deliver a working appli-
cation. I had already lined up about
20 coders (literally across the world)
who (1) knew the XFB methodology
and (2) were waiting for the code.

They had no idea what the appli-
cation was; all they got were indi-
vidual files. They never saw the
database; it had been very recently
designed by my friend and col-
league, Jeff Bane, and we had used a
technique I developed called query
sims to provide query data to the
developers without actually hook-
ing their code up to a database.

Forty-eight hours later, I got all
the code back. There were more
than 200 separate fuses. Part of my
agreement with the developers was
that each one would provide test
harnesses for their code so that I
knew the files had been unit-tested.

I will confess that I was more
than a little nervous as I began to
“stitch” the files together. You know
the old saying that in theory there’s
no difference between practice and

theory – but in practice, there is! A
little over four hours later I was
ready to do what one developer
calls a “smoke test,” where you run
the code and look for smoke pour-
ing out of your server.

Now, I’d like to tell you that
everything went perfectly well; all
files integrated seamlessly. If this
had been a movie, that’s just how it
would have been written, but it did-
n’t turn out quite this way. As a mat-
ter of fact, it turned out that, in my
haste, I had left out two files that
needed to be written – and in seven
or eight others I had neglected to
tell the coder about a variable that
had to be passed along.

I wrote the Fusedocs for the miss-
ing files, wrote the code for
those files, and then added
in the pass-thru variable in
the others. This took me
about two-and-a-half hours.
The next time I turned the
machine on, no smoke: the
application worked. Wacky
as it sounds, we delivered the
project early. More impor-
tant, we discovered that a
remote development team
can work if we understand
the dynamics behind it and
create a system that accom-
modates these.

So the story has a happy
ending: my client in Boston
got the job done on time; his
client in California was
thrilled; working in Atlanta, I
learned a whole lot about
remote teaming; a bunch of
coders from several different
countries were paid well to
write clean code without
having to try to read the
client’s mind – all in all, a
Hollywood sort of ending.

Of course, every movie
has a curmudgeon – and
mine was Jeff Bane, who was

a little worried that we might have
created sky-high expectations for
the sequel to our “movie.” Well, I
appreciated his concern, but I
assured him that I had duly
impressed on my client that this
was an awfully high-risk project;
that things could have happened
that could have sabotaged our
efforts; that next time we really
should ...

Cell phone rings.
“Hello? Oh, hello, David! How’s

the weather in Boston? You know, I
was just writing an article about the
experience with remote develop-
ment of the e-commerce site. I was
just thinking how crazy we must
have been to take on…what’s that?
A full company intranet? And you
told them what?!! Listen, David…"

Fade to black.
For more information on the

tools and methodologies for remote
teaming discussed in this article,
visit www.halhelms.com.

ABOUT THE
AUTHOR
Hal Helms
(www.halhelms.com)
is a Team Allaire
member who
provides both on-site
and remote training
in ColdFusion
and Fusebox.

HAL.HELMS@TEAMALLAIRE.COM

PACIFIC
ONLINE

www.paconline.net

“ e all agree that your theory is crazy.
The question is, ‘Is it crazy enough?’

—Neils Bohr, Danish physicist
W

www.ColdFusionJournal.comCFDJ JULY18

CFDJ FEATURE

BY JEREMY PETERSEN AND DAN KISON

Maintaining Live
Verity Collections in a

Clustered Environment

T he task seemed monumental: “Come up with a way to keep

live Verity data indexed and accessible to multiple Web

servers in a clustered environment.” The scope of the data was

huge – hundreds of thousands of pieces of content – with new

additions made 24 hours a day, every day of the year. All known

methods to accomplish this task just did not seem to do the job

adequately. It was time to get creative.

While analyzing the inner workings of the stock Verity 97
engine that ships with ColdFusion 4.5, the following keys to suc-
cess were identified:
1. Verity searches are CPU-intense; thus it would be best not to

force all the servers in the cluster to search on one server, but
rather make each server responsible for its own searches to
best spread out the workload.

2. Verity indexing is even more CPU-intensive than the search-
ing; thus any box stuck with the task of continual indexing
would spend most of its time pegged at 100% CPU usage and
would not be desirable for any other task.

The theory started to clarify. We would dedicate one server to con-
tinually update the indexes. This would be called the Utility Server. As
soon as this server finished a round of updates, it would start the next.
As mentioned above, this Utility Server would spend most of its time
at 100% CPU usage, so it would be used only for the index updates.

The next piece of the puzzle was to determine the best way to
share file access to these Verity collections. With ever-changing
data and a CPU operating at 100%, the Utility Server would not
be an option. So we decided to dedicate another box to simply
hold the most current and searchable version of the indexes.
This would be called the Index Server.

The final component was the Web servers. This was easy, as
all they had to do was map Verity collections to the Index Server.

The basic setup made sense, but some of the details were still
missing:
1. If the Utility Server was copying updated index files to the

Index Server, what would happen to any ongoing searches
that were currently using the collections on the Index Server?

2. How would we clean old index data from the Index Server
without impacting ongoing searches?

One idea was to work with multiple collection groups on the
Index Server, say collection “A” and collection “B.” While collec-
tion “A” was being indexed and copied over, collection “B” would
handle all of the searches from the Web servers. This sounded
like a possible solution but added an extra degree of complexity.
Was the extra complication necessary?

What if we could simply use CFFILE to copy new index data
and delete old index data directly to the live set of collections on
the Index Server? But that would go directly against what we
have been told is a best practice (locking all Verity collections
during update transactions). Before we gave up on the idea, we
contacted Verity representatives to see if they could offer any
advice. We were pleasantly surprised when they informed us
that the Verity 97 engine was designed to handle ongoing “file
transactions” while live searches are being performed. Time to
run some tests and see what we could find out.

For our test environment we set up a small clustered environment
of our own (see Figure 1). On another set of eight machines (two
machines per Web server), we opened a total of 20 browser instances
on each of the four Web servers and ran test code (see Listing 1)
that was looping over a basic CFSEARCH on a Verity collection.

At the same time the searches were being performed, we were
updating the Verity collection on the Utility Server, copying the col-
lection to the Index Server, and deleting old Verity files from the
Index Server. Building the indexes using CFINDEX and copying the
files with the use of CFDIRECTORY and CFFILE was very straight-
forward (see Listing 2) but deleting the files required a little more
thought. Because Verity collections store many files in pairs, we
would need some logic that deleted all but the latest pair of files in
each Verity subfolder. So we came up with a custom tag called
tag_delete (see Listing 3).

Deleting Old Verity Files
It’s important to understand the structure of the Verity files.

This helps to better understand why we delete what we do with
the Delete tag. To learn the file structure of Verity collections and
why the deletion of the old Verity files is important, see
www.allaire.com/handlers/index.cfm?id=18429&method=full
(“Understanding Verity Collections in ColdFusion”).

<!--- call to the tag --->

<cf_tag_Delete

source=""

fileDateTime="">

The tag is called by passing two parameters. The source para-
meter is the directory path in which to begin deletion, and
fileDateTime is a time stamp used to mark how far in the past
the tag can delete (see Listing 3).

As the code in Listing 1 was executing, the output would
begin by returning the old record count. As we updated the
indexes, the output would change to reflect the new data:

103
103
103
103
127
127

www.ColdFusionJournal.com 19JULY CFDJ

“...The Verity 97 engine was designed to
handle ongoing ‘file transactions’ while live

searches are being performed”

www.ColdFusionJournal.comCFDJ JULY20

Over the course of many such tests, we did not experience
any collection corruption or errors of any kind.

Interacting with Copies of Index Files
To clarify a major point in regard to not locking our Verity

index transactions, we’re talking only about interacting with
copies of the index files themselves and CFSEARCH, not the actu-
al index creation and modification process of CFINDEX – as that
code is always run with single thread access on the Utility Server.

Live for Six Months
Our tests were successful. We moved from our test data to an

actual clustered environment and started using real data. The
final product has been live for six months (at the time of this
writing) with no ill effects. We are confident in this theory, but,
as always, make sure to run tests in your own environment to
guarantee that it will work for you.

The following is a more detailed look at the machines we
used and a basic set-up procedure for each machine.

Machines Used
• One Utility Server
• One Index Server
• Four Web servers (multiple)

Utility Server
The Utility Server has a scheduled task set to run every minute.

This scheduled task sets a lock file (lock_verityCollectionUpdate.txt).
When this scheduled task begins, it checks the existence of this lock
file. If the file exists, the task will end without attempting to do an
update. If the lock file does not exist, the task will run. It will write
the lock_verityCollectionUpdate.txt file, retrieve all new data
since the last time it ran, and then update and optimize all Verity
collections. Next the task will copy all new index files to the Index
Server. It then reads over the Index Server’s collection files and
removes all but the latest files. Finally, the task will delete the
lock_verityCollectionUpdate.txt file.

Index Server
The Index Server simply holds the “live” Verity collections.

Web Servers
The Web servers all map their collections to the Index Server.

There are no local collections on these machines; thus, as per
load balancing setup, each Web server will supply the CPU
usage for any searches its visitors require. As Verity searches can
become CPU-intense, this gives your searches the most bang for
your buck.

Setup Procedure
• Ensure that all ColdFusion tasks are running under accounts

that have security privileges to work with all servers. (In
Windows NT 4.0 and 2000, go to Services, then check the
properties of the CF Services to see what account they’re run-
ning under.)

• Make sure to use realistic request timeouts, so that your
indexing code will not timeout before it’s complete.

Utility Server
• Map a drive to the location in which you’ll store the files on

the Index Server.
• Create the collections on this machine. Depending upon how

long it takes for your collections to build, it’s advisable to
build your collections using Netscape 4.X – as IE has been
known to time out.

• Set up a scheduled task to run task_verityCollection-
Update.cfm (see Listing 4) to run every minute. Enable this
task as soon as the Index Server is set up.

Index Server
Copy the collections from the Utility Server to the Index

Server. This will prime the pump and needs to be done by hand
only once, for initial setup. This step is also important to set up
the proper directory structure for the files on the Index Server,
so that the file transactions can take place.

Web Servers
• Map drive to the Index Server.
• In the CF Administrator, set up a new mapped Verity collec-

tion pointing the map drive to the Index Server you just set
up. Note: You will need to get the collection name exactly as
it’s shown on the Utility Server.

About the Authors
Jeremy Petersen is certified in ColdFusion and has been using it since version 1.5. He is
the manager of Web application engineering for TeachStream, Inc., in Salt Lake City, Utah.

Dan Kison has worked with ColdFusion since version 3.0. He created Web sites for
the Air Force for four years, and continues to build Web applications.

dkison@yahoo.com

jeremy.petersen@teachstream.com

FIGURE 1: Live Verity collection server environment

Web Server 1 Web Server 2 Web Server 3 Web Server 4

Index Server Utility Server

The Web servers have a
drive that is mapped
(y:\collections) to the Index
Server. The collections path
name in the CF Administrator
shows the collections are located
on the y drive.

The Utility Server performs
the endless loop of updating
its Indexes and then using
cffile to copy them
over to the Index Server.

The Index Server
simply holds the
"live" Verity
collections.

<!--- test search code --->

<cfloop index="loopOn" from="1" to="50">
<cfsearch name="s1"
collection="test"
criteria="*">
<cfoutput> #s1.recordCount#
</cfoutput>

</cfloop>

<!--- tag_Copy.cfm full code listing --->
<!--- This custom tag copies a complete folder
structure (including sub folders) --->
<cfdirectory action="LIST"
directory="#attributes.source#"
name="dirlist">
<cfloop query="dirlist">

<!---if we are on a sub directory then
call another instance of this tag for the sub
directory. Also, ignore the . and .. directory
entries. --->

<cfif dirlist.type is "Dir"
AND dirlist.name is not "."
AND dirlist.name is not "..">

<cf_tag_Copy

Listing 2

Listing 1

www.ColdFusionJournal.com 21JULY CFDJ

source="#attributes.source##dirlist.name#\"
destination=
"#attributes.destination##dirlist.name#\">
<!---ignore the . and .. directory entries. --->
<cfelseif dirlist.name IS NOT "."
AND dirlist.name IS NOT "..">

<cffile action="COPY"
source="#attributes.source##dirlist.name#"
destination="#attributes.destination##dirlist.name#"
nameconflict="overwrite">

</cfif>
</cfloop>

<!--- tag_Delete.cfm full code listing --->

<!--- This custom tag loops over all files in the
index and removes all but the latest 2 in each
folder based on the fileDateTime parameter value.
The reason we save 2 in place of 1 is because
some parts of a collection write files in groups
of 2. Ideally this code can be optimized to know
exactly what files to delete (in place of this
basic formula). --->

<cfdirectory action="LIST"
directory="#attributes.source#"
name="dirlist">

<cfloop query="dirlist">
<!---if we are on a sub directory then call
another instance of this tag for the sub directory.
Also, ignore the . and .. directory entries. --->

<cfif dirlist.type is "Dir"
AND dirlist.name is not "."
AND dirlist.name is not "..">
<cf_tag_delete

source="#attributes.source##dirlist.name#\"
fileDateTime="#attributes.fileDateTime#">

<!---ignore the . and .. directory entries. --->
<cfelseif dirlist.name IS NOT "."

AND dirlist.name IS NOT "..">
<cfdirectory action="LIST"

directory="#attributes.source#"
name="filelist">

<!---gt 4 as the . and .. + the 2 files we want
to keep = 4. Also, all verity files we want

to keep will start with 00 --->
<cfif filelist.recordcount GT 4

AND dirlist.name CONTAINS "00">
<!---all entries to be removed must be older

then the passed attributes.fileDateTime. --->
<cfif DateLastModified LT attributes.fileDateTime>
<CFFILE ACTION="Delete"

FILE="#attributes.source##dirlist.name#">
</cfif>

</cfif>
</cfif>

</cfloop>

<!--- task_verityCollectionUpdate.cfm
code listing --->

<!--- initilize collection Name --->
<cfset collectionName= "myTestCollection">
<!--- initilize base path for collection
on the Utilty Server.--->
<cfset utilityServerPath
="C:\CFUSION\Verity\Collections\">
<!--- initilize base path for "live"
collection data to reside on Index Server--->
<cfset indexServerPath= "Y:\foo\">

<html>
<head>

<title>Update Verity Collections Task</title>
</head>

<body>
<CFOUTPUT>
<!--- If no lock file exists, then this task is
not already In reply to: use and can run --->
<cfif NOT FileExists("#utilityServerPath#
lock_verityCollectionUpdate.txt")>

<!--- This will be used to see how much time
the task takes to run --->

<cfset sTime = #Now()#>
No Lock file exists. Creating one at:

#utilityServerPath#lock_verityCollectionUpdate.txt

set to #now()#
<!--- write new lock file--->
<cffile action="write"
file=
"#utilityServerPath#lock_verityCollectionUpdate.txt"
output="#Now()#">

<!--- update index --->
<cfindex collection="#collectionName#"
action="Update"
type="path"
key="C:\Inetpub\wwwroot\work"
urlpath="127.0.0.1/work/"
extensions=".html, .htm, .cfm, .txt"
language="English"
recurse="yes">

<P>The collection has been Indexed

<!--- optimize index --->
<CFCOLLECTION

Action="Optimize"
Collection="#collectionName#">

<P>The collection has been optimized

<!--- copy optimized index files to "live"
location on index server--->

<cf_tag_Copy
source="#utilityServerPath##collectionName#\"
destination="#indexServerPath##collectionName#\">

<P>The Collection has been copied to
#indexServerPath##collectionName#\

<!--- remove old index files from
"live" location --->

<!--- read in date/time of last lock
from file --->

<cffile action="READ"
file="#utilityServerPath#

lock_verityCollectionUpdate.txt"
variable="lockDate">

<cf_tag_Delete
source="#indexServerPath##collectionName#\"
fileDateTime="#lockDate#">

<P>#indexServerPath##collectionName#\
has been cleaned of old index data files

<!--- output results --->
<CFSET eTime = #Now()#>
<p>Start: #sTime#

End: #eTime#

Total time (seconds):

#DateDiff("s", sTime, eTime)#

<!--- remove lock file--->
<cffile action="delete"
file="#utilityServerPath#

lock_verityCollectionUpdate.txt">
<p> Deleting Lock File.

<!--- lock file exists --->
<cfelse>

LOCKED!
<!--- read in date/time of last

lock from file --->
<cffile action="READ"
file=
"#utilityServerPath#lock_verityCollectionUpdate.txt"
variable="lockDate">
<p>LockDate: #lockDate#
<p>File: #utilityServerPath#

lock_verityCollectionUpdate.txt

<!--- lock file is too old (over 45 minutes)-
lets override/remove it --->

<cfif DateDiff("n", lockDate, now()) GT 45>
<!--- remove lock file--->
<cffile action="delete"
file=

"#utilityServerPath#lock_verityCollectionUpdate.txt">
</cfif>

</cfif>
</cfoutput>
</body>
</html>

Listing 4

Listing 3

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

www.ColdFusionJournal.com

Many projects include compli-
cating factors, such as the integra-
tion of diverse technologies, inter-
action with other software systems,
or adherence to a defined set of
requirements.

Is it any surprise that the soft-
ware development process is prone
to errors? Communication errors.
Software defects (bugs). Or maybe
even just ideas for features to be
implemented in the next phase of a
project (that tend to get lost or for-
gotten if they’re not recorded some-
how). These types of issues need to
be tracked and resolved for any pro-
ject of significant size.

The Web provides an excellent
platform in which to field an appli-
cation that will allow teams of devel-
opers to collaborate on tracking and
resolving software issues. I will pro-
vide a design for a rudimentary
Web-based issue-tracking system,
as well as suggestions on potential
enhancements to the system.

Goals of the System
The goals of this issue-tracking

system are the following:
1. To serve as a central location

where all project issues are
recorded.

2. To allow developers, testers, and
other personnel to collaborate in
an essential development task,
the resolution of project issues.

3. To serve as a record of issues that
have been resolved.

To meet these goals, the system
will record issues in a database,
which will be Microsoft SQL Server
in this case (the design could easily
be adapted for other databases).
The system design will support
multiple projects, each of which
may have numerous issues associ-
ated with it.

The system will provide a top-
level Project page, which will display
a list of projects to which a user has
been assigned. Each project can have

issues associated with it. The system
will allow users to view, create, edit,
and delete issues as needed.

Database Design
The foundation for this issue-

tracking system is the database
design, shown in Figure 1. As a con-
vention, each table name begins
with a prefix of “pt_”, which means
that these tables can generally be
dropped into an existing database
without producing a name conflict
with existing tables.

The PT_PROJECT table provides
a list of projects, each with a
unique ID and a project name. This
table also has a column called
ACTIVE_IND (with possible values
of Y or N) that indicates whether a
project is active or not. This allows
completed projects to be marked as
inactive, so they don’t appear on a
user’s list of projects.

Each project can have multiple
issues associated with it. These
issues are stored in the PT_ISSUES
table, which contains the following
columns:
• issue_id: A unique ID for the issue.
• change_date: The date and time

that the issue is updated.
• entry_date: The date and time

that the issue is first entered.
• issue_desc: A description of the

problem. This can be of any length.
• issue_status_id: A foreign key to

the PT_ISSUE_STATUS_LOOKUP
table. An issue can have an issue
status ID of “Open,” “Test,” or
“Closed.”

• issue_title: A short title to
describe the issue.

• issue_type_id: A foreign key to the
PT_ISSUE_TYPE_LOOKUP table.

SOFTWARESYSTEMS

BY
DAVID

KEENER

Using the Web to collaborate on tracking
and resolving software issues

B
uilding software systems is a lengthy and complicated
process that may involve anywhere from a single
developer to multiple teams of developers, who
may all be working in different locations.”

Tracking Software Issues

FIGURE 1: Issue-tracking system database design

project_id: int IDENTITY(1,1)

project_name: varchar(60) NOT NULL

active_ind: varchar(1) NOT NULL

pt_projects

project_id: smallint NOT NULL

project_name: varchar(30) NOT NULL

priority_desc: varchar(100) NULL

pt_priority_lookup

project_id: smallint NOT NULL

project_name: varchar(30) NOT NULL

priority_desc: varchar(100) NULL

pt_issue_type_lookup

project_id: int NOT NULL

user_id: int NOT NULL

pt_project_users

user_id: int IDENTITY(1,1)

login_name: varchar(30) NOT NULL

password: varchar(30) NOT NULL

pt_users

issue_status_id: smallint NOT NULL

issue_status_id: varchar(30) NOT NULL

issue_status_desc: varchar(30) NULL

pt_issue_status_lookup

user_id: int IDENTITY(1,1)

issue_status_id: smallint NULL

user_id: int NOT NULL

issue_title: varchar(80) NOT NULL

issue_desc: text NULL

entry-date;datetime NOT NULL

change_date: datetime NOT NULL

issue_type_id: smallint NOT NULL

priority_id: smallint NOT NULL

project_id: int NOT NULL

pt_issues

CFDJ JULY22

www.ColdFusionJournal.com 23JULY CFDJ

CONCEPTWARE AG
www.conceptware.com/eye

www.ColdFusionJournal.com

SOFTWARESYSTEMS

Issue types may include “Defect,”
“Idea,” “Database Change,” or any
other types that may be appropriate.

• project_id: A foreign key to the
PT_PROJECTS table. Stores the
project ID of the project to which
the issue belongs.

• priority_id: A foreign key to the
PT_PRIORITY_LOOKUP table.
Some issues are just more impor-
tant than others. This column allows
the importance of an issue to be
defined, such as “Critical,” “High,”
“Normal,” “Low,” and “Minor.”

The PT_USERS table defines the
users for the system. Then, the
PT_PROJECT_USERS table defines
the projects to which a user has access.

Let the Tracking Begin
The top-level Web page for the

system is the Projects page, which
displays a list of active projects to
which a user has access. For this
example system, the user ID is
defined in the session variable, ses-
sion.user_id. Typically, you would
implement a login scheme for the
system. Upon successfully logging
in, the user ID would be set in a ses-
sion variable, and would thus be
available for the Projects page. Since
we’re focusing on the issue-tracking
aspects of the system, I’ve provided a
snippet of test code at the beginning
of the Projects page that hard-codes
the number 1 for the user ID. (The
code for this article can be found at
www.ColdFusionJournal.com.)

The Projects page is displayed in
Figure 2, and the corresponding code
is shown in Listing 1. The name of
each project is set up as a hyperlink to
the Issues page, with a URL that
includes the project ID as a parameter.

The Issues page (see Figure 3) dis-
plays a concise and ordered list of
issues for the specified project. Each
row shows the title of an issue, the
issue ID, the issue status, the priority

and the last change date for the issue.
The title of the issue is a link to the
Issue View page, which displays all of
the details concerning the issue.
Each row also includes links to the
Edit Issue and Delete Issue pages.
Finally, near the top of the page,
there’s a link to the New Issue page.

Modifying Issue Information
These last three Web pages, the

New Issue, Edit Issue, and Delete
Issue pages, allow users to change
information in the database after
responding to a form. In each case,
the form posts the information from
the form to the same Web page. Thus,
each Web page works in two modes.

In the first mode, no form infor-
mation has been posted to the page.
Therefore, the code displays the
Web page with the form to collect
information from the user. Upon
submission, the information from
the form is posted to that Web page,
where ColdFusion makes them
available as form variables.

The code checks to see if one of the
form variables is defined. If it is, then
the page goes into the second mode,
handling the posted information. In
the case of the New Issue page, for
example, this means inserting infor-
mation into the database. It uses the
CFTRANSACTION tag to ensure that
the operation, if it consisted of multi-
ple steps, does not get interrupted. It
then redirects the user back to the
Issues page, properly specifying the
URL parameter for the project.

This technique allows all code
associated with a defined task, such as
editing issue information, to be con-
tained in a single source file. Some
developers prefer not to handle forms
this way, but it eases maintenance on
those large ColdFusion projects.

Just a Starting Point
While useful, the issue-tracking

system described in this article is a
fairly basic example of the breed.
Here are examples of enhance-
ments that can be added to the sys-
tem to create a more full-featured
software development tool:
• Login System: Mentioned previous-

ly, the issue-tracking system almost
demands a login mechanism.

• Privileges: A system for privileges
could be created, so that not all
users would have access to fea-

tures, such as creating, editing, or
deleting issues. For example, a
consulting company might want
to make the issue-tracking system
available for a client, but set privi-
leges so that only the development
team could modify the issues.

• Security: Currently, a user could
look at issues from a project they’re
not associated with simply by alter-
ing the project ID parameter in the
URL for the Issues page. A more
robust system would have some
security in place to prevent this.

• Issue Notes: The system allows an
issue to be updated with addi-
tional text to describe the resolu-
tion process. Many systems store
updates as time-stamped notes
that are associated with an issue.
So an issue might consist of the
original issue as entered, plus a
series of entries in a PT_NOTES
table that would represent a his-
tory of the issue and the steps
taken to resolve it.

This is just a starting point.
There are numerous features that
could be added to expand the capa-
bilities of this system.

Universal Accessibility
In only the past few years, the Web

has expanded to the point where
almost anybody can access the Web
no matter where they are. Its near
universal accessibility makes it the
ideal platform for fielding collabora-
tive Web applications, of which the
issue-tracking system described in
this article is only one example.

FIGURE 2: Projects page

FIGURE 3: Issues page

ABOUT THE
AUTHOR

David Keener is the
chief information

officer for AboutWeb
(www.aboutweb.com),

a Web solutions
company located in the

Washington, DC, area.
He has a BS

in computer science
and is a specialist in

information publishing.

DKEENER@ABOUTWEB.COM

CFDJ JULY24

www.ColdFusionJournal.com 25JULY CFDJ

MACROMEDIA
www.macromedia.com/downloads

www.ColdFusionJournal.com

In this article I’ll demonstrate
some of the similarities and differ-
ences between custom tags and user-
defined functions in ColdFusion 5.0.

Before we discuss user-defined
functions, though, let’s review what
custom tags are. A ColdFusion cus-
tom tag is just a ColdFusion template
that can be called within an applica-
tion. Custom tags are useful for hiding
code complexity and allowing other
developers to use added functionality
in their applications without having
to understand the custom tag code.

What Are User-Defined Functions?
User-defined functions are simi-

lar to custom tags, in that they hide
code complexity; however, user-
defined functions are written
between <CFSCRIPT> blocks. The
<CFSCRIPT> tag allows developers
to write JavaScript-like code in
CFML pages. One advantage of
using the <CFSCRIPT> tag is that
functions that often return useless
values (e.g., ArrayAppend(), Array-
Sort(), ArrayClear(), etc.) can be
written without being assigned to a
variable. For example, the following
“traditional” ColdFusion

<CFSET tmp =

ArrayAppend(aMyArray, “3”)>

can be rewritten in a <CFSCRIPT>
block as follows:

<CFSCRIPT>

ArrayAppend(aMyArray, “3”);

</CFSCRIPT>

The <CFSCRIPT> tag can
improve code readability in a num-

ber of situations by sometimes
allowing the developer to write
code with less awkward syntax.
Developers who have experience
with JavaScript or C may find writ-
ing user-defined functions less
clumsy than writing custom tags.
For a complete review of
<CFSCRIPT> syntax, see Ben Forta’s
article, “Stick to the Script” (CFDJ,
Vol. 2, issue 7).

Custom tags have a protected
variable scope, meaning that any
variable used on the calling page
must be explicitly passed into the
custom tag for it to be accessible.
Likewise, any variable used within a
custom tag must be passed out for it
to be available on the calling page.

Custom tags also provide an
advantage in that they can be called by
any page within the application. This
can be done by placing the tag in the
ColdFusion custom tags installation
directory (c:\cfusion\CustomTags) or
by using the <CFMODULE> tag.

Like custom tags, user-defined
functions can be written to protect
variables used within the function.
This is done with the var keyword,
which has been added to the
<CFSCRIPT> syntax in ColdFusion
5.0. However, unlike custom tags,
user-defined functions can access
variables that are available on the
calling page.

What this means is that it’s possi-
ble for the function to overwrite
existing variables on the page.
Unlike custom tags, user-defined
functions can only be called from a
page that physically contains the
code for the function.

The fact that a developer can not
call a user-defined function from
any page within the application
may seem troubling, but it’s easily
remedied. If the developer has a
library of user-defined functions
that he or she would like to access
throughout an application, a file
containing the <CFSCRIPT> code
can be saved and simply included
through a <CFINCLUDE> tag in
either the calling document or the
Application.cfm file.

Calculating a Factorial
I would like to demonstrate the

difference between custom tags and
user-defined functions through the
calculation of a factorial. A factorial
is a simple mathematical computa-
tion, which is often depicted as n!,
where n is the number for which
you want to calculate the factorial.
A factorial of a positive integer is
equal to the number multiplied by
all integers less than it. For example,
5! is equal to 5 x 4 x 3 x 2 x 1 = 120.

BY
MIKE

GEORGE B
efore the release of ColdFusion 5.0, developers
had to add user-defined functionality to their
applications through custom tags. Now they
have the ability to create user-defined functions.

User-Defined Functions in ColdFusion 5.0

CUSTOMTAGS

Deciding between custom tags
and user-defined functions:

Which should you be using?

CFDJ JULY26

www.ColdFusionJournal.com 27JULY CFDJ

MACROMEDIA
www.macromedia.com/go/devcon01

The Depth and Breadth of Education to Advance Your Professional Skills
The JDJEdge 2001 Conference & Expo provides your best opportunity to understand how Java technologies

can solve enterprise challenges.

Four information-packed JDJEdge Tracks featuring leaders in Java Technologies

Track 1 J2ME – Micro Edition & Wireless
Cutting-edge sessions for software engineers and hardware
specialists working on wireless solutions.

Track 2 J2SE – Standard Edition
General Java programming for corporate programmers developing
full Java applications, including several introductory sessions.

Track 3 J2EE – Enterprise Edition
Advanced sessions for software architects, Web programmers,
corporate developers and consultants developing server-
based applications.

Track 4 Working with I-Technology
Technical and management sessions for business analysts, corporate
systems managers, architects, project managers and CIOs .

www.sys-con.com/JDJEdge/

Who Should Attend
Developers, Programmers, Engineers

i-Technology Professionals

Senior Business Management

Senior IT/IS Management

Analysts, Consultants

The only event backed by
SYS-CON Media and
Java™ Developer’s Journal

JDJEDGE 2001 Features
Unmatched Keynoters and Faculty

Over 150 Intensive Sessions and Tutorials

The Largest Java Expo on the East Coast
Participation by Invitation Only

BEA WebLogic™ FastTrack to Certification

IBM WebSphere™ FastTrack to Certification

Macromedia ColdFusion™ FastTrack to Certification

Sun Java™ FastTrack to Certification

JDJ Readers’ Choice Awards, the

Oscars of the Software Industry, is

the world’s most widely participated

industry award program. Winners

will be recognized at JDJEdge

2001 International Java Developer

Conference & Expo in New York.

JA
VA

developer’s journal

Readers’
CHOICE
 AWARD

September 23-26, 2001

is your most valuable educational

opportunity of the year.

Don’t Miss It!

JAVA AND JAVA-BASED MARKS ARE TRADEMARKS OR REGISTERED TRADEMARKS OF SUN MICROSYSTEMS, INC. IN THE UNITED

STATES AND OTHER COUNTRIES. SYS-CON PUBLICATIONS AND SYS-CON EVENTS ARE INDEPENDENT OF SUN MICROSYSTEMS.

Register

NOW

for best rates!

With

GOSLING
Creator of Java

VP & Fellow, Sun Microsystems

LYNCH
President

Macromedia

BARATZ
CEO, Zaplet, Inc.

Former President, JavaSoft

ROSS
Founder, JavaLobby

Panel Moderator

SCOTT
CEO, PointBase, Inc.
Cofounder, Oracle

SMITH
Chief Java Strategist

IBM

DIETZEN
CTO
BEA

KIESSLING
CEO

Sitraka

SYS-CON
MEDIA

A. Sagar

J. Westra A. WilliamsonS. Rhody

ADVISORY BOARD

J. Milbery S. Phipps

Java Lobby XML Journal Java Developer’s Journal

WebServices Journal Wireless Business & Technology Linux Business Week

WebTechniques Programmer’s Paradise

ColdFusion Developer’s Journal WebSphere Developer’s Journal

Media Sponsors: Owned & produced by

135 Chestnut Ridge Road,
Montvale, NJ 07645

201 802-3069
Fax: 201 782-9651

www.ColdFusionJournal.com

In the world before ColdFusion
5.0, we would calculate factorials
through the use of a custom tag. To
demonstrate, I have created a cus-
tom tag (see Listing 1) called
<cf_GetFact>. My custom tag takes
two attributes: N, which is the
number I want to calculate the fac-
torial for; and r_N, which is the
name of a variable that I want to
contain the returned result. For
simplicity, I have not added any
error checking to the custom tag.

To calculate 5!, I call the custom
tag as follows:

<CF_GetFact N="5" r_N="n">

To optionally print out the result
of 5!, I would add the following code
after the call to the custom tag:

<CFOUTPUT>#n#</CFOUTPUT>

A local variable will then be
available on the calling page called
n. In looking at the code for the cus-
tom tag, you may notice that while
the tag gets the job done, it is not
very elegant. In addition, I have to
pass two parameters into my tag to
get results (the beginning number
and the factorial result).

What if I just want to print the
value of 5! on a page? After the call
to <cf_GetFact>, I would then need
to place the variable n within a
<CFOUTPUT> tag. This whole
process may not seem like a big
deal, since this is what ColdFusion
developers have been doing for
some time, but it’s better suited to a
user-defined function.

If you’re familiar with scripting
syntax (e.g., the <CFSCRIPT> tag),
then there’s an easier (and much
more refined way) to compute a fac-
torial. Since ColdFusion 5.0 allows
developers to write user-defined
functions, I can simply create a func-
tion on the page (using JavaScript-
like syntax) within a <CFSCRIPT>
block (see Listing 2). Again, for sim-
plicity, I have omitted any error
checking from the function.

I can now call the function
exactly as I would any other
ColdFusion function (e.g., Now(),
Len(), Abs(), etc.). For example, if
I’m only interested in printing the
value of 5! to the page, I can simply
add the following code anywhere

on the page:
<CFOUTPUT>#GetFact(5)#</CFOUTPUT>

Note that the call to this user-
defined function can be either
before or after the function is actu-
ally defined in the <CFSCRIPT>
block. ColdFusion 5.0 is smart
enough to figure out where the
function is defined. However, if you
include your user-defined function
through a <CFINCLUDE> tag,
Allaire recommends that you make
calls to the user-defined function
only after the <CFINCLUDE> tag on
the page.

Now allow me to explain how the
GetFact() function works. When the
GetFact() function is called, the
argument of the function (in the
above example, the argument is
“5”), gets passed into the function
as the variable n. The function
checks to see if the variable n is less
than or equal to 1. If so, the function
returns the value of 1. Otherwise,
the function returns the current
number (5) multiplied by another
call to the function, passing the
attribute of n-1 (4 in this case).

This process continues until the
value of the variable n is equal to 1.
The final result (in the above exam-
ple) turns out to be 5 x 4 x 3 x 2 x 1,
or 120. This is a simple example of a
recursive function. This function
will continue to call itself until a
specific condition is met. In this
case, the function stops when n is
equal to 1. User-defined functions
in ColdFusion 5.0 do not need to be
recursive; however, a recursive
solution is better for some types of
mathematical computation – such
as this factorial example.

Recursive functions are very
powerful tools, which, in some
instances, are the only viable way to
solve some mathematical problems.
However, be careful when dealing

with recursion. Recursive functions
gobble up memory quickly and you
can imagine how an inexperienced
programmer could easily write an
infinite loop that could use up the
system resources.

The GetFact() function looks and
behaves exactly like a built-in
ColdFusion function. An added
benefit to using a user-defined
function over a custom tag (in this
case at least) is the fact that I don’t
need to worry about passing a vari-
able out of the function, whereas
with a custom tag the developer
must worry about both the attribut-
es and caller scopes within the cus-
tom tag. If I want to assign the
results of GetFact() to a variable, I
can assign a variable to the function
within a <CFSET> or within a
<CFSCRIPT> block.

For example:

<CFSET n = GetFact(5)>

and

<CFSCRIPT>

n = GetFact(5);

</CFSCRIPT>

are both legal references to the user-
defined function. The calls to this
user-defined function are both more
elegant and easier to understand
than the calls to the <CF_GetFact>
custom tag. While a user-defined
function may not always be the best
solution to a particular problem, I
believe it is the appropriate solution
for this example.

Which Should You Be Using?
I’ve discussed the similarities

and differences between custom
tags and user-defined functions.
Which should you be using? User-
defined functions are great if
you’re accustomed to writing C or

CUSTOMTAGS

CFDJ JULY30

“ use both custom tags and user-defined functions in
development. Both have their place. Both allow us
features and solutions that the exclusive use of one or
the other does not. Be flexible, so that you can use
them both to their best advantage”I

www.ColdFusionJournal.com 31JULY CFDJ

JavaScript, or are familiar
with the <CFSCRIPT> tag.
Just remember that user-
defined functions have a few
limitations.

To be able to use a user-
defined function on multiple
pages of an application, you’ll
have to include it on the
required pages (or Applic-
ation.cfm file) with the
<CFINCLUDE> tag. In addi-
tion, user-defined functions
protect variables defined
within the function (with the
var keyword); however, other
variables available on the call-
ing page can be altered by the
function.

Be careful what variables
you use in your user-defined
functions. I would recommend
passing all necessary outside
variables into the function and
define all local variables with
the var keyword. This will help
reduce the possibility of over-
writing variables on the cur-
rent page.

Custom tags have the
advantage of being familiar to
most ColdFusion developers.
They can easily be made avail-
able to all pages within an
application (or multiple appli-

cations) by placing the custom
tag in the c:\cfusion\Custom-
Tags folder, or by accessing
the custom tag through the
<CF-MODULE> tag.

In addition, custom tags
provide the advantage in that
variables used within the cus-
tom tag are protected from the
calling page, and vice versa.
However, as with the factorial
example above, some coding
may be clumsy in ColdFusion
tags. This clumsy code may be
better suited to a user-defined
function.

There are also some pro-
gramming solutions that are
not easily achieved through a
custom tag (e.g., recursion),
which may make user-
defined functions the ideal
programmatic solution.

I use both custom tags and
user-defined functions in
development. Both have their
place. Both allow us features
and solutions that the exclu-
sive use of one or the other
does not. Be flexible, so that
you can use them both to
their best advantage.

<CFPARAM NAME="attributes.n" DEFAULT="1">
<CFPARAM NAME="attributes.r_n" DEFAULT="n">

<CFIF attributes.n LE 1>
<CFSET "caller.#attributes.r_n#" = 1>

<CFELSE>
<CFSET Result = 1>
<CFLOOP INDEX="i" FROM="#attributes.n#" TO="1" STEP="-1">

<CFSET Result = Result * i>
</CFLOOP>
<CFSET "caller.#attributes.r_n#" = Result>

</CFIF>

<CFSCRIPT>
function GetFact(n)
{

if (n LE 1)
return 1;

else
return n * GetFact(n - 1);

}
</CFSCRIPT>

Listing 2: GetFact user-defined function

Listing 1: <cf_GetFact> custom tag

CODE
LISTINGS

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listings for
this article can also be located at

www.ColdFusionJournal.com

MGEORGE@ATMEDICAUSA.COM

ABOUT THE
AUTHOR
Mike George is an
Allaire-certified instructor
and developer working
at Atmedica USA, LLC.
In addition to ColdFusion,
Mike has developed Web
and desktop applications
in JSP, ASP, Spectra,
Visual Basic, Java, and C.
Since receiving his
master’s in statistics,
Mike has worked as a
programmer, instructor,
and statistician at AT&T,
DuPont, and Infovision.

www.ColdFusionJournal.com

135 Chestnut Ridge Rd., Montvale, NJ 07645
Telephone: 201 802-3000 Fax: 201 782-9600

president and ceo
Fuat Kircaali fuat@sys-con.com

advertising
senior vp, sales & marketing

Carmen Gonzalez carmen@sys-con.com

vp, sales & marketing
Miles Silverman miles@sys-con.com

advertising director
Robyn Forma robyn@sys-con.com

advertising account manager
Megan Ring megan@sys-con.com

associate sales manager
Carrie Gebert carrie@sys-con.com

associate sales manager
Christine Russell christine@sys-con.com

associate sales manager
Alisa Catalano alisa@sys-con.com

advertising intern
Alison Novick alison@sys-con.com

editorial
executive editor

M’lou Pinkham mpinkham@sys-con.com

editor
Nancy Valentine nancy@sys-con.com

managing editor
Cheryl Van Sise cheryl@sys-con.com

associate editor
Jamie Matusow jamie@sys-con.com

associate editor
Gail Schultz gail@sys-con.com

associate editor
Brenda Greene brenda@sys-con.com

assistant editor
Gregory Ludwig greg@sys-con.com

production
vice president, production

Jim Morgan jim@sys-con.com

art director
Alex Botero alex@sys-con.com

assistant art director
Cathryn Burak cathyb@sys-con.com

assistant art director
Louis F. Cuffari louis@sys-con.com

assistant art director
Richard Silverberg richards@sys-con.com

graphic designer
Abraham Addo abraham@sys-con.com

graphic designer
Aarathi Venkataraman aartathi@sys-con.com

web services
web designer

Stephen Kilmurray stephen@sys-con.com

web designer
Purva Dave purva@sys-con.com

web design intern
Carol Auslander carol@sys-con.com

accounting
chief financial officer

Bruce Kanner bruce@sys-con.com

assistant controller
Judith Calnan judith@sys-con.com

accounts payable
Joan Larose joan@sys-con.com

sys-con events
vice president, events

Cathy Walters cathyw@sys-con.com

sales executive, exhibits
Richard Anderson richard@sys-con.com

sales executive, exhibits
Michael Pesnick michael@sys-con.com

conference director
Danielle Nappi danielle@sys-con.com

conference manager
Michael Lynch mike@sys-con.com

show assistant
Niki Panagopoulos niki@sys-con.com

JDJ store manager
Anthony D. Spitzer tony@sys-con.com

www.ColdFusionJournal.com

Recently, in an online forum, a
new developer asked how to submit
data-driven Web pages to search
engines. I’m sure the answer was
unexpected: pages requiring para-
meters to display properly can’t be
submitted at all.

Data-driven pages make up what
is commonly known as the invisible
Web, whose size has been estimated
at hundreds of times the size of the
static Web that search engines see.

Engines that can overcome the sta-
tic limitation – like invisibleweb.com
and beta.profusion.com – are still in
their infancy, so don’t expect them or
similar technology to come into wide-
spread use anytime soon.

This article describes a simple
method that allows you to produce
submit-friendly, seemingly static
pages from your dynamic content.
The dynamic nature of your content
will be preserved, and this method
will not require any special sort of
administrative access to your server.
This will allow search engines to see
your pages while you retain the abil-
ity to manage them. The number of
pages on your site visible to a search
engine is about to go way up.

Prepare Yourself
Everyone knows successful pro-

jects are built on elegant code written
with surgical skill and finesse. Ah, but
there’s something to be said for
putting on a hockey mask and run-
ning around with an ax. That’s a good
characterization of the method I’ll
discuss here, and in fact the whole
idea seems a bit crazy at first glance.

It’s All in the Details
Dynamic pages typically rely on

some sort of passed variable – often a
URL variable – to display data-driven
content. Thus to display the details

on three products the links to those
pages look something like this:

item.cfm?IID=1

item.cfm?IID=23

item.cfm?IID=456

The parameter IID is the key value
used to pull the requested content
from your database (to keep things
simple, my examples assume the
unique identifier is a numeric vari-
able along the lines of a SQL Identity
or Access AutoNumber field).

When indexing the above links,
search engine robots will see that
question mark and stop dead, there-
by ignoring that portion of your site.
To solve the problem, we have to do
two things: first we must eliminate
the need for a passed variable; next
we must have one discrete, physical
HTML/CFML “entrance” page for
each dynamic item in the database.

Listing 1 contains dynamic.cfm:
a simple dynamic page showing a
store product. The oversimplified
design contains only the basics of a
data-driven page: a query and its
output. There are no meta tags.
There’s no point in including them,
since the page can’t be crawled or
submitted in the first place.

Listing 2 contains maker.cfm.
This template will produce the indi-
vidual entrance pages. Lines 1–7
select the key value field from all
records in the Items table.

The Ax Man Cometh
This is where things get hairy. Lines

8–15 execute a CFLOOP over those
query results. This CFLOOP accom-
plishes two tasks. First, by using query
output on Lines 9–10, it creates a vari-
able, used on Line 14 by CFFILE. The
CFFILE operation on Lines 11–14
takes static.cfm (see Listing 3) and lit-

erally copies it, as many times as there
are records to loop over.

As a result of the above, each
newly created copy of static.cfm has
a key value embedded in its file-
name. You’ll wind up creating a gag-
gle of pages named like this:

static_1.cfm

static_23.cfm

static_456.cfm

What Have I Done?
If you have 200 products in your

store, you just created 200 duplicate
ColdFusion templates with slightly
different names. Let’s assess the
consequences of this bizarre move.

Listing 3, static.cfm5, serves the
same purpose as Listing 1. Added to it
is code that extracts the identity num-
ber from the filename and makes it
more attractive to a search engine.

The CFSET in Lines 1–2 uses the
REFind function and the variable
CGI.PATH_INFO to hunt down the
starting position of the filename-
embedded ID number: 1 position is
subtracted from the value returned
by REFind so the next CFSET on
Lines 3–4 only removes the text up to
the first position of the identity
number, not including it.

The third and final step in stripping
out the ID number is on Lines 5–6. It
uses REReplaceNoCase to remove
everything after (and including) the
“.cfm” in the template name. By using
a regular expression rather than just
looking for “.cfm” we strip out any
parameters that may be attached to
the end of the URL for some reason.

These three operations create
#variables.IID#, which is plugged
into the CFQUERY on lines 7–18.
Note: This query has the text field
Items.Keywds in it. This contains
item-specific search keywords for

‘Disappear’ from the Invisible Web

DATA-DRIVENPAGES

BY
MATT

ROBERTSON

Your page hits are about to go way up

D
ata-driven sites are a great way to manage
and deliver content. But at a price. You may
as well kiss deep linking and extensive
search-engine indexing goodbye. Here’s a
solution to this problem, but it’s not pretty.

CFDJ JULY32

www.ColdFusionJournal.com 33JULY CFDJ

MACROMEDIA
www.allaire.com/usergroups

www.ColdFusionJournal.com

use later in the template. If you
already have a keywords field to aid
your visitors in searching for prod-
ucts, then it may fit in nicely right
here with no modification.

Lines 19–21 perform an impor-
tant maintenance function. What
happens if you delete a database
record? Should you delete the cor-
responding entrance page? As these
pages are now visible to search
engines, they’re also susceptible to
linkrot (search engine-indexed pages
that no longer exist).

If you remove an item from your
database, Lines 19–21 sense this by
evaluating the RecordCount and
providing a referring link if neces-
sary. I’m keeping things simple here.
You can get as fancy as you like.

Lines 22–31 are necessary for my
style of page content, but maybe not
yours. This example uses the database

record’s Items.Description field to pro-
vide the META Description content on
Line 38. Since on my sites this field
contains fully formatted HTML, it
must be stripped to an unbroken string
of bare text. The first step in this
process uses the custom tag
CF_RENoTags on line 22 to remove
HTML tags. The remainder of this code
block uses the Replace function to
remove carriage returns and line feeds.

Lines 34–38 add a title (impor-
tant to search engines), which con-
sists of the product name, plus the
META Keywords and META
Description tags. The remainder of
Listing 3 is simple query output.

How Does It Affect the Existing Site?
It won’t. These apparently static

entrance pages work outside your
normal site structure. Build the
master template (i.e., static.cfm)

using your regular data-driven tem-
plate as the model – menu links
included – adding in only the search
engine optimizations and the key
field extraction code. Visitors may
arrive via the entrance page, but as
soon as they hit a link they’ll be right
back in your site’s normal structure.

If you don’t want your Web direc-
tory to contain hundreds of entrance
pages, an easy solution presents
itself: create the files in a subfolder
off the regular template folder and
adjust your links accordingly (using
a BASEHREF statement, perhaps).

Will it be as simple as that? Maybe,
but if you’re like me, you pass more
than one parameter via the URL. Your
design will have to account for this. In
my case, it is usually fairly simple: all I
often need is to run a couple of extra
key-lookup queries and create a ses-
sion identifier.

CFDJ JULY34

<CFQUERY
NAME="ItemDetail"
DATASOURCE="#MyDSN#">

SELECT
Items.ItemID,
Items.Name,
Items.Description,
Items.Price

FROM Items
WHERE Items.ItemID = (#url.IID#)

</CFQUERY>
<html><head><title>Product Item</title></head>
<body>
<CFOUTPUT QUERY="ItemDetail">
#ItemDetail.ItemID#, #ItemDetail.Name#

#ItemDetail.Description#<p>
#ItemDetail.Price#
</CFOUTPUT>
</body></html>

<CFQUERY
NAME="Maker"
DATASOURCE="#MyDSN#">
SELECT Items.ItemID
FROM Items WHERE 0=0
ORDER BY Items.ItemID ASC

</CFQUERY>
<CFLOOP QUERY="Maker">

<CFSET DestFile="c:\myfolder\item_"
& Maker.ItemID & ".cfm">

<CFFILE
ACTION="Copy"
SOURCE="c:\myfolder\static.cfm"
DESTINATION="#DestFile#">

</CFLOOP>
<html><body>
<p>You just created
<CFOUTPUT>#Maker.RecordCount#</CFOUTPUT> files:

<CFLOOP QUERY="Maker">
<CFSET TheFile="item_" & Maker.ItemID & ".cfm">
<CFOUTPUT>
#TheFile#
</CFOUTPUT>
</CFLOOP>

</body></html>

<CFSET variables.IDNum =
#REFind("[[:digit:]]", CGI.PATH_INFO)# - 1>

<CFSET variables.IID =
RemoveChars(CGI.PATH_INFO,1,variables.IDNum)>

<CFSET variables.IID =
ReReplaceNoCase(variables.IID,".cfm.*","")>

<CFQUERY
NAME="ItemDetail"
DATASOURCE="#MyDSN#">

SELECT
Items.ItemID,
Items.Name,
Items.Description,
Items.Price,
Items.Keywds

FROM Items
WHERE Items.ItemID = (#variables.IID#)

</CFQUERY>
<CFIF ItemDetail.RecordCount LT 1>

<CFLOCATION URL="index.cfm" ADDTOKEN="No">
</CFIF>
<CF_RENoTags INPUT="#ItemDetail.Description#">
<CFSET CRLF = Chr(13) & Chr(10)>
<CFSET LF = Chr(10)>
<CFSET CR = Chr(13)>
<CFSET variables.stripped =

Replace(stripped_text, CRLF, " ", "ALL")>
<CFSET variables.stripped =

Replace(variables.stripped, CR, " ", "ALL")>
<CFSET variables.stripped =

Replace(variables.stripped, LF, " ", "ALL")>
<html><head>
<CFOUTPUT>
<title>#ItemDetail.Name#</title>
<meta name="keywords"

content="#ItemDetail.Keywds#">
<meta name="description"

content="#variables.stripped#">
</CFOUTPUT>
<body>
<CFOUTPUT QUERY="ItemDetail">
#ItemDetail.ItemID#, #ItemDetail.Name#

#ItemDetail.Description#<p>
#ItemDetail.Price#
</CFOUTPUT>
</body></html>

Listing 3

Listing 2

Listing 1

CODE
LISTINGS

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listings for
this article can also be located at

www.ColdFusionJournal.com

DATA-DRIVENPAGES

www.ColdFusionJournal.com 35JULY CFDJ

Note that creating entrance pages
for every data-driven page on your
site isn’t necessarily the best idea. I
have clients with hundreds of prod-
ucts in their stores, which translates
to hundreds of submittable pages.
Enough is enough. Besides, it’s the
product pages that contain the con-
tent visitors want in the first place.
You'll have to assess each project indi-
vidually with these issues in mind.

How Does It Change My Traffic?
Your pattern of site entry should

change completely in a few months.
You’ll start to see visitors coming in
from entrance pages with regularity
– as people search for things and
find your new engine-indexed
pages in the results. You should also
see more visitors – as you now have
a much “bigger” site with more rel-
evant, indexable content.

Text Quantity Range
Will this affect how you produce

content? Possibly, depending on
what your site is about. Just popping
in META tags will give only limited
results. Search engines generally

need more to work with on a page.
Typically the text quantity should
aim for the range of 200–600 words
(even though the rules – such as
they now exist – vary by engine and
seem to change weekly).

A product detail page with just a
photo and a product title isn’t likely
to do much for you. Put in a para-
graph or two describing the prod-
uct, its benefits, related products
for sale, and so on.

Red-Flagged as an
Engine-Spammer

A comprehensive discussion of
best practices on this subject is
beyond the scope of this article. One
thing I will say: don’t create 200
pages and immediately submit
them. You’ll get red-flagged as an
engine-spammer if you try that. An
excellent resource for learning more
is at www.searchenginewatch.com.

Once you know how to submit
within the rules, there remains the
repetitive process of doing so. Here it
makes the most sense to use a quality
robot submitter. Personally I use
WebPosition Gold’s Scheduler and

Submission features. Particularly nice
is the fact that I can add hundreds of
pages to a submission task in a single
step with just a few mouse clicks.

Consider creating a ColdFusion-
powered robots.txt routine if you’re
serious about keeping yourself
crawler-friendly. While the creation of
referrer pages to replace obsolete
content is pretty standard advice, and
the method discussed here neatly
handles this, it’s a good idea to update
robots.txt to exclude the obsolete
copies of static.cfm, which now are
merely linkrot-preventing referrers.
Without too much extra effort you can
now data-drive what was formerly a
manual process and further enhance
your page-indexing methodology.

Throws the Doors Wide Open
It’s big, it’s bad, and, as promised,

it’s just plain ugly. Nonetheless, it
completely eliminates a major limita-
tion found in your typical data-driven
site, and throws your doors fully open
to the “visible” World Wide Web.

ABOUT THE
AUTHOR
Matt Robertson is
president and chief
designer at MSB
Designs, Inc., a Web
development firm
specializing in
ColdFusion-driven
applications.

MATT@MYSECRETBASE.COM

DTN FINANCIAL SERVICES
www.finwin.com

In Part 1 of this series (CFDJ, Vol. 3, issue 6), I explained how
to easily generate the necessary VTML code for providing Tag
Inspector, Tag Help, and Tag Insight features inside CF Studio
for your custom tags. (Part 1 is available online at www.sys-
con.com/coldfusion/archives/.)

Part 2 focuses on building Tag Editor dialogs using VTML to
provide real user interface–based dialogs for your custom tags
in CF Studio. If you haven’t read Part 1, take a quick look at it
before continuing Part 2.

Building Tag Editor Dialogs with VTML
To build Tag Editor dialogs you’ll have to leave the guided paths

of visual VTML editing and go deep into the hand-coding of VTML.
But it’s not as complex as it may seem at first glance, so let’s begin
by analyzing what we already have in code by using a fictional cus-
tom tag called <cf_myOwnCustomTag>, which can take the fol-
lowing attributes: <cf_myOwnCustomTag headline="Just a head-
line" status="Active" titleFont= "Verdana" color="Red">.

Listing 1 contains the completely finished VTML code for our
fictional custom tag.

Named by <TAG NAME="CF_MYOWNCUSTOMTAG"></TAG>,
the VTML file contains five sections (as outlined in Part 1), while the
<ATTRIBUTES> section contains a list of <ATTRIB> tags that repre-
sent the attributes the custom tag can take and their types. (Part 1
provides a list of these types.)

The most interesting attribute type is Enumeration, which is a
predefined list of certain values an attribute can take:

<ATTRIB NAME="STATUS" TYPE="ENUMERATED">

<ATTRIBOPTION VALUE="Active"/>

<ATTRIBOPTION VALUE="Inactive"/>

<ATTRIBOPTION VALUE="Pending"/>

</ATTRIB>

Aside from the value, it’s also possible to set a caption for
each <ATTRIBOPTION> tag:

<ATTRIB NAME="STATUS" TYPE="ENUMERATED">

<ATTRIBOPTION VALUE="Active" CAPTION="Active

connection"/>

<ATTRIBOPTION VALUE="Inactive"

CAPTION="Inactive connection"/>

<ATTRIBOPTION VALUE="Pending" CAPTION="Pending

request"/>

</ATTRIB>

This <ATTRIBUTES> section of the VTML file is responsible
for the Tag Insight feature. The <ATTRIBCATEGORIES> section

CFDJ FEATURE

BY CHRISTIAN SCHNEIDER

VTML
byExample

How to successfully
e x t e n d the

ColdFusion Studio IDE

Part 2

www.ColdFusionJournal.com36 CFDJ JULY

www.ColdFusionJournal.com 37JULY CFDJ

logically groups attributes into different categories to better
organize them in the Tag Inspector. By default, all attributes are
in a single category named Misc, but you can group them as you
like by simply adding further <ATTRIBGROUP> tags here:

<ATTRIBCATEGORIES>

<ATTRIBGROUP NAME="Misc"

ELEMENTS="COLOR,TITLEFONT,HEADLINE,STATUS"/>

</ATTRIBCATEGORIES>

The last section generated by the Tag Definitions Editor is
<TAGDESCRIPTION>, which provides your custom tag with a help
file (this is an important and handy feature when you’re distribut-
ing your custom tags). As mentioned in Part 1, by placing the
HTML file inside the C:\Program Files\Allaire\ColdFusionStudio\
Extensions\Docs\CFMLTags\directory with a proper name, you
can activate the help file in Studio by pressing F1 over your tag.

<TAGDESCRIPTION HELPFILE="../../Docs/CFMLTags/cf_my-

OwnCustomTag.htm"/>

To build a tag editing dialog the Tag Definitions Editor needs
the code for the user interface and how each control corre-
sponds to an attribute. The <EDITORLAYOUT> and <TAGLAY-
OUT> sections are responsible for this. Inside the <EDITOR-
LAYOUT> section you’ll have to code the user interface by plac-
ing controls such as text boxes, drop-down lists, color pickers,
and so on, onto the dialog. The <TAGLAYOUT> section
describes how the Studio IDE should generate the tag code
after you press “OK.”

You should be concerned about how the user interface looks.
I usually scribble a draft of how the dialog should look and what
controls to use that correspond to the attributes. Only after fin-
ishing this do I start coding the dialog with VTML.

For our sample tag called <cf_myOwnCustomTag>, we have
the following list of attributes: Color (a color value), Titlefont (a
font name), Headline (just plain text), and Status (an enumera-
tion of Active, Inactive, and Pending). This list suggests that our
Tag Editor dialog should have a color picker, a font picker, a text
box, and a drop-down list of the three predefined values for the
Status attribute.

The VTML tags you’ll need to know for designing the user
interface of the dialog are <CONTAINER> and <CONTROL>. As
their name suggests, a <CONTAINER> tag (like a panel) can con-
tain <CONTROL> tags corresponding to input controls such as
a text box or color picker. Let’s start filling the <EDITORLAY-
OUT> section of our VTML file with a basic dialog for
<cf_myOwnCustomTag>:

<EDITORLAYOUT HEIGHT="250" WIDTH="500">

<CONTAINER NAME="Panel1" TYPE="Panel" WIDTH="480"

HEIGHT="200" CAPTION="Basic Information">

<CONTROL NAME="lblHeadline" TYPE="label" CAP-

TION="Headline" DOWN="30" RIGHT="20"

WIDTH="60" ALIGN="Right"/>

<CONTROL NAME="txtHeadline" TYPE="TextBox"

ANCHOR="lblHeadline" CORNER="NE" WIDTH="350"/>

</CONTAINER>

</EDITORLAYOUT>

This code generates a 500x250 pixel dialog containing one
panel (titled Basic Information) that acts as a container for a
label control (displaying the text “Headline”) and a text-box

control named txtHeadline. As the attributes of the <CONTAIN-
ER> tag are more or less self-explaining (name, type, width,
height, and caption), I’ll take a closer look at the <CONTROL>
tag. Think of the layout as a relative layout where you can posi-
tion certain controls with hard-coded coordinates inside a
panel (the attributes down and right starting at the upper-left
corner of the container panel).

However, you can also position controls relative to each other
by setting their anchor attributes to the name of the control to
anchor at, as well as specifying the corner (here, NE for north-
east, NW for northwest, SE for southeast, and SW for southwest)
where the control should be placed, along with the attributes
DOWN and RIGHT to assign an offset.

This relative positioning is helpful when you’re moving cer-
tain controls on the dialog, because you have to move only one
control and all anchored controls move too, retaining their
alignment and relative position. See the Tag Inspector of the
<CONTROL> tag for all possible values of its attributes.

By extending the above dialog to show all input controls of
our <cf_myOwnCustomTag> sample, which should be a drop-
down list, a font chooser, and a color picker, the result looks like
that shown in Listing 2 and in Figure 1; see also Listing 1 for its
VTML source.

The following types of input controls are possible with VTML:
• Label
• TextBox
• CheckBox
• RadioGroup
• DropDown
• ListBox
• TextArea
• FontPicker
• ColorPicker
• Image
• FileBrowser
• StyleTextBox
• StyleTextArea
• SQLTextArea
• ActiveX

For a complete reference description on how to use these
control types, see the ColdFusion Studio help (the section titled
“Customizing the Development Environment”). Describing

FIGURE 1: Tag Editor in action

www.ColdFusionJournal.comCFDJ JULY38

how to use each type would be out of this
article’s scope; it’s meant to be a tutorial,
not a reference.

Having noticed that the <CONTROL>
tags reside in a <CONTAINER> tag acting
as a panel, you’re surely interested in
what other types of containers are possi-
ble:
• Panel: A general purpose panel con-

tainer; can contain any controls
• TabDialog: A tab dialog container

capable of containing one or more
TabPage containers

• TabPage: A tab page that can hold a
panel; only used inside a TabDialog
container

As you see from this list, it’s possible to
design a tabbed dialog to split and orga-
nize many input controls into small
chunks accessible via tabs. Listing 3 pro-
vides an example of a tabbed dialog.

Making the Dialogs Work
So far you’ve seen how to design the

user interface of a Tag Editor inside the
<EDITORLAYOUT> section. Now it’s time
to make your dialogs work; that is, how to
assign certain input controls to certain
attributes.

At first the Tag Editor must be aware
of what attribute data is currently pre-
sent in your template to prefill the

input controls. For this only a small
change must be made in the <ATTRI-
BUTES> section: add the attribute CON-
TROL="theControlName" to each <ATTRIB>
tag, while the names of each control
should match the names given in the
<CONTROL> tags:

<ATTRIB NAME="COLOR" TYPE="COLOR"

CONTROL="txtColor/>

<ATTRIB NAME="TITLEFONT" TYPE="FONT"

CONTROL="txtTitlefont"/>

...

Now, when you’re clicking on a
<cf_myOwnCustomTag> tag that’s hold-
ing attributes, you’ll see their values suc-
cessfully being populated into the dialog.
But there’s still one special situation:
imagine that your custom tag is a paired
custom tag like <cf_someTag>Some con-
tent here</cf_someTag> that’s holding
content, and you wish to populate this
content into your editor dialog. No prob-
lem; just assign the content to a control of
your dialog using the following special
<ATTRIB>-tag: <ATTRIB NAME="$$TAG-
BODY" CONTROL="txtNameOfControl"/>.

The final step in building a Tag Editor
is to assign how the data entered into the
dialog’s input controls is populated back
into the template. To do this you’ll have
to touch the final <TAGLAYOT> section
of our VTML file, which defines a tem-

plate of how the finished tag (here
<cf_myOwnCustomTag>) will be filled
with content from the dialog.

Here we’ll cover a little bit of WIZML
code to define some basic logic of how to
generate the tag. For a deeper look into
WIZML, I recommend Part 3, which will
cover WIZML in greater detail with regard
to building custom wizards.

To define what your Tag Editor dialog
will output, fill some content inside the
<TAGLAYOUT> section. Whatever con-
tent there is between <TAGLAYOUT> and
its closing counterpart </TAGLAYOUT>
will be put back into the template. To out-
put dynamic data depending on what the
user has entered in the dialog, you can
use WIZML variables, which are written
using the following convention: $${name-
OfVariable}.

A simple version of our <TAGLAYOUT>
section would look like this:

<TAGLAYOUT>

<cf_myOwnCustomTag

headline="$${txtHeadline}" sta-

tus="$${txtStatus}"

titleFont="$${txtTitlefont}"

color="$${txtColor}">

</TAGLAYOUT>

Try it out and you’ll see your Tag
Editor dialog working (don’t forget to

CFXHOSTING
www.cfxhosting.com

www.ColdFusionJournal.com 39JULY CFDJ

PAPERTHIN
www.paperthin.com

restart CF Studio to let all changes take
effect). But you can go even further by
using additional logic inside the <TAG-
LAYOUT> section.

For example, you can determine
whether the user has checked the
“Output on single line” checkbox inside
the Tag Dialog, and whether the user
has set the option of lowercase or
uppercase tag code. You can even check
for any unknown attributes assigned to
the tag code and keep the attributes
that are not covered by your dialog
untouched.

For these three cases the following
special WIZML variables are passed to the
dialog:
• OPTIONLinearLayout: Returns “true”

or “false.” Specifies whether the tag
should be generated with its attributes
in a single line or indented vertically.

• OPTIONLowerCaseTags: Returns “true”
or “false.” Specifies whether the tag
should be generated using lowercase.

• TAGDATAUnknownAttributes: A string
containing all attributes that were
contained in the edited tag string,
but not recognized by the editor
dialog.

You can check for these variables with
an easy WIZML tag: just ask if they’re true
using <WIZIF><WIZELSE></WIZIF>, much

like the <CFIF><CFELSE></CFIF> con-
struct that you know (see Listing 1).

Here we simply check for a linear layout
and assign either a zero-length string to the
variable Spacer or a line break and some
spaces. The Spacer is then used behind
every attribute, which is output either as
lowercase or uppercase depending on the
OPTIONLowerCaseTags variable. The tem-
plate would yield the following Tag Layout:

• Linear Layout:
<cf_myOwnCustomTag headline="Just a

headline" status="Active"

titleFont="Verdana" color="Red">

• Nonlinear Layout:
<cf_myOwnCustomTag headline="Just a

headline"

status="Active"

titleFont="Verdana"

color="Red">

Finally, you may want to incorporate
any unknown attributes of the tag such as
<cf_myOwnCustomTag headline="Just a
headline" status="Active" titleFont="Verdana"
color="Red" someUnknownThing=42 back-
groundColor="Blue">. To do this, the edi-
tor should check for unknown attributes
and retain them instead of losing them
during the editing process. All unhandled
attributes, if there are any, are available in

the variable TAGDATAUnknownAttributes,
which should simply be appended at the
end of the tag:

<cf_myOwnCustomTag

headline="$${txtHeadline}"$${Spacer}

status="$${txtStatus}"$${Spacer}

titleFont="$${txtTitlefont}"$${Spacer

} color="$${txtColor}"<WIZIF

TAGDATAUnknownAttributes NEQ

"">$${Spacer}

$${TAGDATAUnknownAttributes}</WIZIF>>

For a complete listing of the VTML file
see Listing 1.

Finally, here’s a tip you’re surely look-
ing for: instead of restarting CF Studio
every time to see your changes, you can
press CTRL-SHIFT-ALT-C to reload all
VTML files into memory. This saves you a
lot of time, and you can blame me for
telling you the tip at the end of this article
instead of the beginning.

I’d like to sum up that coding VTML is
easier than many developers might expect,
and doing this little extra work when dis-
tributing custom tags pays off in a great
deal of added convenience. Macromedia
has built well-developed extension possi-
bilities inside the Studio IDE that should
be used wherever possible.

mail@christian-schneider.de

www.ColdFusionJournal.comCFDJ JULY40

<!--- /// cf_myOwnCustomTag.vtm /// ---->
<!--- Place into
#StudioDirectory#/Extensions/TagDefs/Custom/ --->

<TAG NAME="CF_MYOWNCUSTOMTAG">

<ATTRIBUTES>
<ATTRIB NAME="COLOR" TYPE="COLOR" CONTROL="txtColor"/>

<ATTRIB NAME="TITLEFONT" TYPE="FONT"
CONTROL="txtTitlefont"/>
<ATTRIB NAME="HEADLINE" TYPE="TEXT"

CONTROL="txtHeadline"/>
<ATTRIB NAME="STATUS" TYPE="ENUMERATED"

CONTROL="txtStatus">
<ATTRIBOPTION VALUE="Active"

CAPTION="Active connection"/>
<ATTRIBOPTION VALUE="Inactive"

CAPTION="Inactive connection"/>
<ATTRIBOPTION VALUE="Pending"

CAPTION="Pending request"/>
</ATTRIB>

</ATTRIBUTES>

<ATTRIBCATEGORIES>
<ATTRIBGROUP NAME="Misc"

ELEMENTS="COLOR,TITLEFONT,HEADLINE,STATUS"/>
</ATTRIBCATEGORIES>

<EDITORLAYOUT HEIGHT="220" WIDTH="500">
<CONTAINER NAME="Panel1" TYPE="Panel" WIDTH="480"

HEIGHT="190" CAPTION="Basic Information">
<CONTROL NAME="lblHeadline" TYPE="label"

CAPTION="Headline" DOWN="30" RIGHT="20" WIDTH="60"
ALIGN="Right"/>

<CONTROL NAME="txtHeadline" TYPE="TextBox"
ANCHOR="lblHeadline" CORNER="NE" RIGHT="10" WIDTH="350"/>

<CONTROL NAME="lblStatus" TYPE="label" CAPTION="Status"
ANCHOR="lblHeadline" CORNER="SW" DOWN="15"
WIDTH="lblHeadline" ALIGN="Right"/>

<CONTROL NAME="txtStatus" TYPE="DropDown"
ANCHOR="lblStatus" CORNER="NE" RIGHT="10"
WIDTH="txtHeadline">

<ITEM VALUE="Active" CAPTION="Active
connection" SELECTED="Yes"/>

<ITEM VALUE="Inactive" CAPTION="Inactive
connection"/>

<ITEM VALUE="Pending" CAPTION="Pending
request"/>

</CONTROL>

<CONTROL NAME="lblTitlefont" TYPE="label"
CAPTION="Titlefont" ANCHOR="lblStatus" CORNER="SW"
DOWN="15" WIDTH="lblStatus" ALIGN="Right"/>

<CONTROL NAME="txtTitlefont" TYPE="FontPicker"
ANCHOR="lblTitlefont" CORNER="NE" RIGHT="10"
WIDTH="txtHeadline"/>

<CONTROL NAME="lblColor" TYPE="label" CAPTION="Color"
ANCHOR="lblTitlefont" CORNER="SW" DOWN="15"
WIDTH="lblTitlefont" ALIGN="Right"/>

<CONTROL NAME="txtColor" TYPE="ColorPicker"
ANCHOR="lblColor" CORNER="NE" RIGHT="10"
WIDTH="txtHeadline"/>
</CONTAINER>

</EDITORLAYOUT>

<TAGLAYOUT>
<WIZIF OPTIONLinearLayout EQ "true">

<WIZSET Spacer = "">
<WIZELSE>

<WIZSET Spacer = Chr(13) & Chr(10) & " ">
</WIZIF>

<WIZIF OPTIONLowerCaseTags EQ "true">
<cf_myOwnCustomTag headline="$${txtHeadline}"$${Spacer}

status="$${txtStatus}"$${Spacer}
titleFont="$${txtTitlefont}"$${Spacer}
color="$${txtColor}"<WIZIF TAGDATAUnknownAttributes NEQ
"">$${Spacer} $${TAGDATAUnknownAttributes}</WIZIF>>

<WIZELSE>

<CF_MYOWNCUSTOMTAG HEADLINE="$${txtHeadline}"$${Spacer}
STATUS="$${txtStatus}"$${Spacer}
TITLEFONT="$${txtTitlefont}"$${Spacer}
COLOR="$${txtColor}"<WIZIF TAGDATAUnknownAttributes NEQ
"">$${Spacer} $${TAGDATAUnknownAttributes}</WIZIF>>

</WIZIF>
</TAGLAYOUT>

<TAGDESCRIPTION
HELPFILE="../../Docs/CFMLTags/cf_myOwnCustomTag.htm"/>

</TAG>

Listing 4: Sample help file
<!--- /// cf_myOwnCustomTag.htm /// ---->
<!--- Place into
#StudioDirectory#/Extensions/Docs/CFMLTags/ --->

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN">

<html>
<head>
<title>cf_myOwnCustomTag</title>
</head>

<body>

<cf_myOwnCustomTag>

<p/>
Usage:

<pre>
<cf_myOwnCustomTag headline="Some

Text here"
status=<font

color="Gray">"Active|Inactive|Pending"
titleFont="Verdana, Arial"
color="Blue">

</pre>

<p/>
Description:

Some sample Custom Tag that does exactly nothing...

<p/>
Author:

Christian
Schneider

</body>
</html>

<EDITORLAYOUT HEIGHT="220" WIDTH="500">
<CONTAINER NAME="Panel1" TYPE="Panel"

WIDTH="480" HEIGHT="190"
CAPTION="Basic Information">

<CONTROL NAME="lblHeadline" TYPE="label"
CAPTION="Headline" DOWN="30" RIGHT="20"

WIDTH="60" ALIGN="Right"/>

<CONTROL NAME="txtHeadline" TYPE="TextBox"
ANCHOR="lblHeadline" CORNER="NE"
RIGHT="10" WIDTH="350"/>

<CONTROL NAME="lblStatus" TYPE="label"
CAPTION="Status" ANCHOR="lblHeadline"
CORNER="SW" DOWN="15"

WIDTH="lblHeadline" ALIGN="Right"/>

<CONTROL NAME="txtStatus" TYPE="DropDown"
ANCHOR="lblStatus" CORNER="NE" RIGHT="10"
WIDTH="txtHeadline">

<ITEM VALUE="Active"
CAPTION="Active connection"
SELECTED="Yes"/>

Listing 2

Listing 1: Finished VTML code for the <cf_myOwnCustomTag> sample

www.ColdFusionJournal.com 41JULY CFDJ

<ITEM VALUE="Inactive"

CAPTION="Inactive connection"/>

<ITEM VALUE="Pending"

CAPTION="Pending request"/>

</CONTROL>

<CONTROL NAME="lblTitlefont" TYPE="label"

CAPTION="Titlefont" ANCHOR="lblStatus"

CORNER="SW" DOWN="15"

WIDTH="lblStatus" ALIGN="Right"/>

<CONTROL NAME="txtTitlefont" TYPE="FontPicker"

ANCHOR="lblTitlefont" CORNER="NE"

RIGHT="10" WIDTH="txtHeadline"/>

<CONTROL NAME="lblColor" TYPE="label"

CAPTION="Color" ANCHOR="lblTitlefont"

CORNER="SW" DOWN="15"

WIDTH="lblTitlefont" ALIGN="Right"/>

<CONTROL NAME="txtColor" TYPE="ColorPicker"

ANCHOR="lblColor" CORNER="NE" RIGHT="10"

WIDTH="txtHeadline"/>

</CONTAINER>
</EDITORLAYOUT>

<EDITORLAYOUT HEIGHT="300" WIDTH="400">

<CONTAINER NAME="TabDialog" TYPE="TabDialog">

<CONTAINER NAME="BasicData" TYPE="TabPage"

CAPTION="Basic Data">

... list all <control> tags for this tab

here...

</CONTAINER>

<CONTAINER NAME="AdvancedData" TYPE="TabPage"

CAPTION="Advanced Data">

... list all <control> tags for this tab here...

</CONTAINER>

</CONTAINER>

</EDITORLAYOUT>

Listing 3

<TAGLAYOUT>

<WIZIF OPTIONLinearLayout EQ "true">

<WIZSET Spacer = "">

<WIZELSE>

<WIZSET Spacer = Chr(13) & Chr(10) & " ">

</WIZIF>

<WIZIF OPTIONLowerCaseTags EQ "true">

<cf_myOwnCustomTag

headline="$${txtHeadline}"$${Spacer}

status="$${txtStatus}"$${Spacer}

titleFont="$${txtTitlefont}"$${Spacer}

color="$${txtColor}">

<WIZELSE>

<CF_MYOWNCUSTOMTAG

HEADLINE="$${txtHeadline}"$${Spacer}

STATUS="$${txtStatus}"$${Spacer}

TITLEFONT="$${txtTitlefont}"$${Spacer}

COLOR="$${txtColor}">

</WIZIF>

</TAGLAYOUT>

Listing 3

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

HOSTMYSITE.COM
www.hostmysite.com

www.ColdFusionJournal.com

Many of us have used the CFCONTENT tag
that comes with ColdFusion to serve up files
to browsers, but very few ColdFusion

developers are aware that the CFCONTENT tag
can be used in conjunction with the HTML
tag to serve up graphics, such as JPEGs and GIFs.

CFCONTENT with Images – from
Web Bugs to Banner Servers

PRACTICALCF

In this case, the why of doing this is
perhaps just as interesting as the how.

It turns out that using this tech-
nique is perfect for use with creat-
ing an advertising banner server,
controlling access to graphic files,
or – on the more sinister side – cre-
ating “Web bugs.”

If you don’t recall, a Web bug is a
graphic (usually an invisible 1 pixel
shim) that is embedded in an
HTML e-mail message or Word doc-
ument that tips off its creator when
and who is reading without readers
even knowing their access was
logged.

If you’ve never used the CFCON-
TENT tag before, it’s an excellent
tool to become familiar with. In lay-
man’s terms, CFCONTENT tells a
Web browser that it’s about to
receive a non-HTML file, and then
sends it to the browser. It does this
by allowing you to specify a MIME
type and a filename to send to the
browser. So a ColdFusion template
name can be put in place of a JPEG
or GIF file, like so:

<IMG

SRC="http://www.myserver.com/

images/send_graphic.cfm">

The ColdFusion template “send-
graphic.cfm” will contain a CFCON-
TENT tag that specifies “image/gif”
for the MIME type and is pointed at
the name of an actual .GIF file. The
kicker is that you can also include
code that logs the access to the file to

a database table or does just about
anything else ColdFusion can do.
This is where privacy advocates get
upset.

If logging access isn’t bad
enough, your send_graphic.cfm file
could also use CFCOOKIE to set a
cookie on the viewer’s machine. In
turn you could later check for the
cookie when the user visits your
Web site. If the cookie is there, then
you could infer that the person
viewed the e-mail, and then decid-
ed to visit the Web site. And that’s
just the beginning of the worst of
the possibilities.

A more common use of CFCON-
TENT in this way is to serve graph-
ics for a banner server-type appli-
cation. The logistics and possibili-
ties are about the same as for a Web
bug. The only major difference is
that even less savvy Internet users

are aware that someone is proba-
bly logging each and every time the
graphic is viewed. In the same spir-
it as with security flaws in applica-
tions, the authors of this article feel
that it’s better to make as many
people as possible aware of these
techniques and then let them
decide how to use the information.
This is, after all, real-world stuff
that is regularly used by Web pro-
grammers at Microsoft, Barnes &
Noble, and other major direct e-
mailers. So in that spirit, let’s look
at some example code in Listing 1.

This simple example uses a cus-
tom tag called <CFX_NSLookup>
free from Lewis Sellar’s Intra-
foundation (www.intrafoundation.-
com/freeware.html), and is used to
get the user’s domain name from
the IP Address. We will use CFTRY
tags to catch any possible logging
failures and just send the image
anyway. Finally, we use CFSETTING
to suppress any extra white space
that might be generated by our
code formatting. To avoid problems
with Web browsers, the only output
we need or want comes from
CFCONTENT.

So there you have it. When the
Web browser or e-mail client loads
the HTML containing <IMG SRC="
www.myserver.com/images/send_
graphic.cfm">, their IP address, the
date, and possibly their domain
name are logged in a database and
the graphic sent, and the uneducat-
ed viewer is none the wiser.

Use CFCONTENT to secretly
track readers of your e-mails

BY ERON COHEN AND
MICHAEL SMITH

CFDJ JULY42

ABOUT THE
AUTHORS

Eron Cohen has
worked with ColdFusion

since 1996. Currently
he is a freelance Web
developer and trainer.

Michael Smith is
president of TeraTech
(www.teratech.com/).

He runs the MDCFUG and
recently organized the
two-day, Washington,

DC-based CFUN-2k
conference that

attracted more than
750 participants.

A MIME type is a description of what
kind of data the browser is receiving. It
helps the browser decide how to display
the data. For example, a type image/gif
will be displayed as an image while
type text/HTML is a regular HTML page.
MIME was originally intended for send-
ing binary files via e-mail, thus the
abbreviation stands for Multipurpose
Internet Mail Extension.

Tip: In Netscape the menu option View,
Page Info will display all parts
of a Web page together with their
MIME types.

MIME Type

www.ColdFusionJournal.com 43JULY CFDJ

the annual

subscription rate

Receive 12 issues of
CFDJ for only $79.99!
That’s a savings of
$10 off the annual
subscription rate.
Visit our site at
www.sys-con.com or call
1-800-513-7111 and subscribe today!

ANNUAL COVER PRICE

$89.99
ANNUAL SUBSCRIPTION RATE

$79.99

$10

YOU PAY

YOU SAVE
Off the Annual
Subscription Rate

SAVE$10Off
SAVE$10Off

send_graphic.cfm:
<CFTRY>
<CFSETTING enablecfoutputonly="yes">

<CFPARAM name="nslookup" default="unknown">

<CFLOCK NAME="NSLOOKUP" TIMEOUT="30">
<CFX_NSLookup IPHOST="#CGI.remote_addr#">
</CFLOCK>

<CFQUERY NAME="Log_Image_Views"
DATASOURCE="#application.dsn#">

INSERT INTO log_image_views
(logo_view_IP,logo_view_date,logo_view_domain)
values
('#CGI.remote_addr#',#createodbcdatetime("#now()#")#,
'#NSLookup#')

</CFQUERY>

<!---
//
<!--- // Force the browser to download the image file.
//--->
<!---
//

<CFCONTENT TYPE="image/gif"
FILE="c:\images\invisible_pixel.gif">

<CFSETTING enablecfoutputonly="no">

<CFCATCH TYPE="any">
<CFCONTENT TYPE="image/gif" FILE="
c:\images\invisible_pixel.gif">
</CFCATCH>

</CFTRY>

Listing 1

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

MICHAEL@TERATECH.COM

ERON_COHEN@YAHOO.COM

Advantages of using CFCONTENT to serve
graphics are:
1. The actual location of the file does not have to

be in the accessible Web path. (This is good if
your users are paying for the files, such as
graphics libraries, PDF reports, or install EXEs.)

2. You can include code in the template that can log
access to the file.

3. The file to be displayed can be dynamically
selected based on other criteria; for instance,
random image display, and graphic size based
on connection speed.

Web bugs graphics let you track who reads e-mail
or Word documents. ColdFusion can server up smart
Web bugs or any other dynamic graphic using
CFCONTENT.

Resources
1. Web bug FAQ: www.eff.org/pub/Privacy/Profil-

ing_cookies_webbugs/web_bug.html
2. General privacy site: www.privacyfoundation.org/

www.ColdFusionJournal.com

More ColdFusion applications
are running on intranets and
extranets than just about anywhere
else. This is not surprising – as
ColdFusion makes data access and
reporting so simple it is a natural fit
for applications in these environ-
ments. And, as such, data reporting
is one area that ColdFusion 5
addresses head-on with the intro-
duction of a true graphing engine.

ColdFusion Graphing
ColdFusion developers have

always wanted a way to graph
data. And so back in Cold-
Fusion 2 days, a series of Java
applets were introduced to
simplify the creation of com-
mon business graphs (pie
charts, bar charts, etc.). These
worked, but they had some
serious limitations:
• They were Java applets, and

as such were not supported
by all browsers.

• They suffered from long
download times and poor
performance.

• They could not be printed
easily.

ColdFusion 5 solves the graphing
problem in a very different way.
Included with ColdFusion 5 is a ver-
sion of Macromedia Generator – a
high-performance, scalable, and
proven graphics generation engine.
Generator is designed to create
dynamic images in a variety of for-
mats using templates that are
processed in real time.

And Generator does not need any
client-side software because the file
formats it creates are standard for-
mats like JPEG (which are supported
by all browsers automatically) – the
only exception to this is Flash, the use
of which is optional (although with
over 96% of all browsers supporting
Flash it is pretty standard too).

Now before you ask, no, you can-
not (yet) extend or enhance the
graphing features exposed to
ColdFusion. Yes, Generator can do
much more than has been made
available at this time, and, at some
point in the future, there likely will
be a way to better utilize more of
Generator within ColdFusion. But
for now you have to use the charts
and graphs explicitly defined in
ColdFusion – and, fortunately,
they’ll do most of what you need, as
you are about to see.

The <CFGRAPH> Tag
As you have come to expect of

ColdFusion, the way you create
graphs is by using a tag. And as
you’ve also come to expect, that tag
is intuitively named <CFGRAPH>.
This seemingly simple tag hides all
the complexity of creating all sorts
of business graphs and charts with
all sorts of options and features.

But instead of telling you about
<CFGRAPH>, let’s look at an exam-
ple. Figure 1 shows a simple bar
chart showing the relative prices of
items for sale. (All of the data in
these examples are taken from the
databases and example applica-
tions in my new ColdFusion 5 Web
Application Construction Kit.)

The code I used to create the
graph is in Listing 1.

First I retrieved data with a basic
<CFQUERY> – the query name is
Merchandise, and the two columns
retrieved are MerchName and
MerchPrice. To create the graph, all
I had to do was pass that data to
<CFGRAPH> – QUERY takes the
name of the query to be used, TYPE
specifies the graph type (BAR, PIE,
AREA, etc.), ITEMCOLUMN takes
the name of the query column to
use as the item name, and VAL-
UECOLUMN takes the name of the
column containing the value to use.

Simple as that, and ColdFusion
does the rest.

Note: ITEMCOLUMN and VAL-
UECOLUMN take column
names, not values, so don’t
place pound signs around the
column names.

So what did that tag actually
do? In Listing 2 is the code that
was embedded in the generated
output. I know it looks a little
complex, but that is because it
is invoking the Flash player so
as to display the above graph in
Flash format. In other words,
the four lines of ColdFusion

code in Listing 1 generated and
embedded Flash content – without
you having to learn anything about
Flash.

And, no, you are not limited to
generating Flash-based graphs.
<CFGRAPH> can also generate
JPEG and PNG images (not GIF
though, sorry). But as I did not
specify a format in my <CFGRAPH>
tag, the default format was used,
and the default is Flash.

Lots of Options
The previous example used a

minimal set of options and attribut-
es. This next example, in Listing 3,
is quite the other extreme, using all
sorts of attributes (far more than
you’d typically use, but it helps
make a point).

<BF>ON<CF>

BY
BEN

FORTA

Be Extremely Graphic
CF5 introduces a true

graphing engine

44 CFDJ JULY

FIGURE 1: Minimal options and attributes

www.ColdFusionJournal.com 45JULY CFDJ

www.ColdFusionJournal.com

Again, I started with a <CF-
QUERY>, this time retrieving
recent items sold and a count of
each. Then comes the <CFGRAPH>
tag. The type is specified as PIE,
the query name is provided; the
format is set to “jpg” (otherwise
the default of Flash would have
been used); and explicit height and
widths are specified along with
background and border colors,
border size, and 3D depth. And
finally, label font and size, title text
and font, and legend position and
font are specified. The end result is
seen in Figure 2.

As you can see, <CFGRAPH> is
very flexible and highly config-
urable. And the Tag Editor seen in
Figure 3 (available for ColdFusion
Studio 4.5x as well as in ColdFusion
Studio 5 when it is available) makes
using these attributes a breeze.

Data Drill-Down
One other very impor-

tant feature that I must
mention is the ability to
generate graphs that sup-
port data drill-down – that
is, click on a pie slice or
chart bar and go to a URL
that provides additional
(or more detailed) infor-
mation.

<CFGRAPH> does not
do this automatically, but
it does provide a simple
mechanism for associat-
ing URLs with graph com-
ponents. Using this you
can create your own drill-
down interfaces by simply

passing the URL of the next chart or
graph to go to (see Listing 4).

This time the query retrieves a
list of directors, and what they have
been paid (converted into thou-
sands by a division in the SELECT
statement itself). The <CFGRAPH>
tag is similar to the ones seen previ-
ously, although this one provides
explicit colors (instead of using the
defaults).

The important changes here are
the last two attributes. URL takes
the URL to go to if you click on a pie
slice. But if the same URL is used for
all slices, how would you know

which slice was clicked?
That’s where the URL-
COLUMN attribute comes
in to play. It takes the
name of a column, the
value of which is append-
ed to the URL specified
in URL.

Here “details.cfm?- Name=”
is the URL, and Name
(whatever value is in col-
umn Name) is the URL-
COLUMN. So, if the name
were “Ben Forta” the gen-
erated URL for that slice
would be “details.cfm?-
Name=Ben+Forta”. In other
words, a unique URL is

created for each slice by
combining the fixed URL

and a dynamic query column (see
Figure 4).

Data drill-down is a valuable
<CFGRAPH> feature, but it is impor-
tant to note that it’s available only
when using Flash as the FORMAT
(and not with JPG or PNG).

For Even Greater Control
You might have been wondering

why <CFGRAPH> has a matching
</CFGRAPH> tag. Well, this is why –
<CFGRAPH> has a child tag named
<CFGRAPHDATA> that can be used
to explicitly populate graphs with
data (without using the QUERY
attribute). For example, the follow-
ing creates a pie chart containing
four pie slices:

<!--- Create graph --->

<CFGRAPH TYPE="pie">

<!--- Pie slices --->

<CFGRAPHDATA ITEM="G"

VALUE="7">

<CFGRAPHDATA ITEM="PG"

VALUE="28">

<CFGRAPHDATA ITEM="PG13"

VALUE="16">

<CFGRAPHDATA ITEM="R"

VALUE="31">

</CFGRAPH>

Of course, you can also use <CF-
GRAPHDATA> to populate a graph
with query data – to do this simply
use a <CFLOOP> to loop through
the query results and then call <CF-
GRAPHDATA> for reach row like
this:

<!--- Create graph --->

<CFGRAPH TYPE="bar">

<!--- Loop through data --->

<CFLOOP QUERY="Directors">

<!--- Add item to graph

--->

<CFGRAPHDATA

ITEM="#Name#" VALUE="#Paid#">

</CFLOOP>

</CFGRAPH>

Why would you ever want to do
this? There are three primary reasons:
1. <CFGRAPHDATA> takes an

optional URL attribute that you
can use to specify a totally
unique URL for each data point
(as opposed to using a single
URL with just a different query
string).

2. <CFGRAPHDATA> takes an
optional COLOR attribute that
you can use for greater color
control.

3. By passing data manually to
graphs you can use CFML for-
matting functions and other pro-
grammatic functions to manipu-
late the data as needed.

<BF>ON<CF>

CFDJ JULY46

FIGURE 3: <CFGRAPH> Tag Editor

FIGURE 2: Explicit attributes

You don’t have to use <CFGRAPHDATA> if you
don’t want to, but it’s nice to know it’s there when you
need it.

Summary
<CFGRAPH> is one of the most exciting new fea-

tures in ColdFusion 5, and one that is built on top of
a proven and scalable product – Macromedia
Generator. With multiple graph types, three output
formats, and dozens of configuration options,
<CFGRAPH> proves once again that Macromedia and
the ColdFusion team know what developers want,
and are deeply committed to providing it.

www.ColdFusionJournal.com 47JULY CFDJ

ABOUT THE
AUTHOR
Ben Forta is
Macromedia’s
evangelist for the
ColdFusion product
line. His new book,
ColdFusion 5 Web
Application Construction
Kit, is now shipping.

BEN@FORTA.COM FIGURE 4: <CFGRAPH> supports Data drill-down

<!--- Retrieve merchandise list --->

<CFQUERY DATASOURCE="ows" NAME="Merchandise">

SELECT MerchName, MerchPrice

FROM Merchandise

ORDER BY MerchName

</CFQUERY>

<!--- Graph prices --->

<CFGRAPH QUERY="Merchandise"

TYPE="BAR"

ITEMCOLUMN="MerchName"

VALUECOLUMN="MerchPrice">

</CFGRAPH>

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-

444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs

/flash/swflash.cab#version=3,0,0,0" WIDTH=500

HEIGHT=300><PARAM NAME=movie

VALUE="/CFGraphingPage.cfm?Action=GetGraph&GraphFile=/cfgra

phs/bar.swt&Key=2046177940&Generate=TRUE&FileType=flash"><P

ARAM NAME=quality VALUE=high><EMBED

src="/CFGraphingPage.cfm?Action=GetGraph&GraphFile=/cfgraph

s/bar.swt&Key=2046177940&Generate=TRUE" quality=high

WIDTH=500 HEIGHT=300 TYPE="application/x-shockwave-flash"

PLUGINSPACE="http://www.macromedia.com/shockwave/download/i

ndex.cgi?P1_Prod_Version=ShockwaveFlash"></EMBED></OBJECT>

<!--- Get current orders --->

<CFQUERY DATASOURCE="ows" NAME="orders">

SELECT MerchName, COUNT(*) AS NumSold

FROM Merchandise, MerchandiseOrdersItems

WHERE Merchandise.MerchID=MerchandiseOrdersItems.ItemID

GROUP BY MerchName

ORDER BY MerchName

</CFQUERY>

<!--- Graph items sold --->

<CFGRAPH TYPE="PIE"

QUERY="orders"

FILEFORMAT="jpg"

GRAPHHEIGHT="240"

GRAPHWIDTH="320"

BACKGROUNDCOLOR="yellow"

BORDERCOLOR="blue"

BORDERWIDTH="5"

DEPTH="25"

VALUECOLUMN="NumSold"

ITEMCOLUMN="MerchName"

SHOWVALUELABEL="Yes"

VALUELABELFONT="Arial"

VALUELABELSIZE="20"

VALUELOCATION="INSIDE"

TITLE="Items Sold"

TITLEFONT="Times"

SHOWLEGEND="below"

LEGENDFONT="Arial">

</CFGRAPH>

<!--- Get directors and amount paid to each --->

<CFQUERY DATASOURCE="ows" NAME="Directors">

SELECT LastName+', '+FirstName AS Name,

SUM(Salary)/1000 AS Paid

FROM Directors, FilmsDirectors

WHERE Directors.DirectorID=FilmsDirectors.DirectorID

GROUP BY LastName+', '+FirstName

ORDER BY LastName+', '+FirstName

</CFQUERY>

<CFGRAPH TYPE="HORIZONTALBAR"

QUERY="Directors"

VALUECOLUMN="Paid"

ITEMCOLUMN="Name"

TITLE="Directors Fees Year To Date (in thou-

sands)"

TITLEFONT="Times"

FILEFORMAT="Flash"

DEPTH="5"

COLORLIST="orange,yellow"

GRIDLINES="3"

URL="details.cfm?Name="

URLCOLUMN="Name">

</CFGRAPH>

Listing 4

Listing 3

Listing 2

Listing 1

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

www.ColdFusionJournal.com

Maybe you’ve even been doing it
in your own code. I’m talking about
setting this variable in the applica-
tion.cfm file to hold the name of your
data source for a given application.

It seems so innocuous, and it
seems to provide ways to make your
code easier to maintain (change the
dsn variable once in the applica-
tion.cfm, and all the templates that
use it under control of that applica-
tion.cfm get the benefit of the
change).

The Problem
However, there’s a problem and it

can be a nasty one. This issue has to
do with the locking of (or failure to
lock) shared-scope variables such as
this one, and the fact that rarely
does any discussion of this
approach include the consequences
of using shared variable scopes.

There have been other articles in
CFDJ on the subject of shared vari-
able locking, as well as Macromedia
Knowledge Base articles.

Maybe you didn’t make the con-
nection between them and this
issue. This article puts the problem
in perspective and offers some
explanations of how to understand
and resolve it. The ultimate solution
involves using a “request”-scoped
variable instead of an “application”-
scoped one.

If you’re not familiar with shared
variable scopes, or are fuzzy about
locking issues, or perhaps have
never understood what “request”
scope variables are about, this arti-
cle should help you.

If you do understand these
things, change your references to
application.dsn to request.dsn,
and if you find any locks around
code that was using such an appli-
cation.dsn variable, you need to
consider whether those should
stay as well. I’ll also offer insights
into how to find and fix such lock-
ing references.

Some Background
You may see code doing this in

application.cfm:

<CFSET application.dsn = "what-

ever">

which declares the variable as
“global,” in essence, and can there-
fore be used later in all other tem-
plates as in:

<CFQUERY datasource="#applica-

tion.dsn#" ... >

to refer to that data source name.
The upside to this is that if the data
source name needs to be changed
(from “whatever” to “whatever_test”,
for instance), you can simply modify
the application.cfm to point to the
new name, and all templates under
its control get the benefit of the
change.

It’s a good plan, but the use of an
application-scoped variable is
flawed. It opens you to potentially
troublesome locking issues (for
more on that, including a good
explanation for why it’s a problem,
see “ColdFusion Locking Best
Practices” at www.allaire.com/Hand-
lers/index.cfm?ID=20370&Method
=Full). More important, you can have
the intended benefit with an equally
useful and less troublesome way.

The Solution
For reasons I’ll explain in a

moment if it’s still unclear, I’m sug-
gesting that you stop using the
application scope to hold the data
source name. However, instead of
dropping “application.” from the
variable name, I’m suggesting that
you use the “request” scope. In
other words, do the following (in
your application.cfm):

<CFSET request.dsn = "whatever">

and then in all your templates do:

<CFQUERY

datasource="#request.dsn#" ...>

If it’s not clear why this is useful,
or how it works, then there may be
confusion about:

Y
ou’ve probably seen the use of a variable called
“application.dsn” (or “application.datasource”)
in code. Perhaps you’ve even been taught to
use the method in a class.

Why It’s Wrong to Use
Application.dsn in Your Templates

BY
CHARLES
AREHART

…and what to do about it

JOURNEYMANCOLDFUSION

CFDJ JULY48

www.ColdFusionJournal.com 49JULY CFDJ

• How the application.cfm works
like a CFINCLUDE (and how we
could, but won’t, use a local vari-
able called “dsn”)

• What the request scope is about
(and why it’s better to use
“request.dsn”)

Let me explain both. Though it
would seem that many understand
the first point, I find they often
don’t and it’s fundamental to the
rest of the discussion. The use of
request scoped variables is also
poorly understood by many. The
end result is that you’ll no longer
have to deal with locking issues
with regard to this variable.

How Application.cfm Works
Like a CFINCLUDE

And How We Could, but Won’t, Use a
Local Variable Called “dsn”

Nearly every CF developer
knows that whenever a CF template
is run, CF first tries to execute any
application.cfm that exists in the
same directory (or its parent direc-
tory, or its grandparent, and so on).

What may not be obvious is that
CF actually runs the application.cfm
like a CFINCLUDE, which means
that any variables set there, including
“local” variables (such as <CFSET
firstname="bob">), are then avail-
able to the template that was origi-
nally being run.

So let’s say we have a template
that does the following:

<CFOUTPUT>Hello

#firstname#</CFOUTPUT>

If it did this and nothing else, you
might expect it to fail since you can’t
refer to variables that don’t exist,
and it’s only outputting the variable,
not creating it. But if firstname was
set in application.cfm (assuming
this template is in a directory con-
trolled by that application.cfm), it
can indeed refer to the variable.

Knowing that, you may wonder
why the folks who promoted this
solution of setting the dsn variable to
the application scope even bothered.
They could just as easily have said:

<CFSET dsn = "whatever">

and then in all their templates do:

<CFQUERY datasource="#dsn#" ...>

It would work. In fact, there’s no
need to be using the application
scope to pass the variable to all
templates (make it global), because
any variables set in the applica-
tion.cfm “trickle down” to all tem-
plates, in effect making them glob-
al. There are certainly good uses of
application scoped variables, but
this isn’t one of them.

The simple example of setting a
variable called “dsn” (or what could
be formally specified as variables.dsn,
which is the same thing) to hold the
name of the data source would work,
and would trickle down to all the
templates. It’s effectively “global,” at
least for the life of that template, and
it’s reset at the execution of each tem-
plate by being executed in the appli-
cation.cfm each time.

I’ve recommended that you use
“request.dsn” rather than “dsn” or
“variables.dsn”. Why? And what is
the request scope, anyway?

What the Request Scope Is About
And Why It’s Better to Use
“Request.dsn”

If you understand that setting a
local variable called “dsn” will work,
can you think of any situation in
which your code may expect to have
access to that variable but won’t?
Think hard. Okay, custom tags. Yep,
most know that custom tags have
their own local variable scope. So a
local variable set in the caller (or in
the application.cfm) won’t be avail-
able to the custom tag.

When we were setting the dsn
variable to an application scope, it
was available in the custom tag (as
are all shared scopes and also form,
url, cgi, and other variables that are
passed to the calling template).

By changing the application.dsn
variable to dsn (or variables.dsn,
same thing) while it’s available in all
templates under control of the
application.cfm, it’s not available to
any custom tags called by those
templates. That’s why we need to
use the request scope instead.

Its sole purpose, poorly under-
stood though it is, is to create local
variables in a program that are
available within custom tags called
by that program (and vice versa).

That’s it. Nothing more.
Many confuse the request scope

with some sort of persistence or
shared nature (and the fact that
there’s a different kind of “request”
scope in other languages like ASP
and JSP only confuses matters fur-
ther). It’s best to think of it as noth-
ing more than a scope that allows
local variables to be seen in a cus-
tom tag called by the template set-
ting the request scope variable.
And since our request.dsn variable
is set in the application.cfm, it
trickles down to the template being
executed and is therefore also
available to any custom tags we
call as well.

That’s why you should use the
request scope rather than a local
scope.

Remediation of Application.dsn
Misuse

One last thought: you may not be
able to blindly do a global search
and replace application.dsn with
request.dsn wherever it occurs.
Depending on the savvy of the
coder, the use of application.dsn
may have at least two wrinkles that
require more care than just replacing
application.dsn with request.dsn:
• You may be testing for the exis-

tence of application.dsn before
setting it in the application.cfm,
in which case you need to set the
request.dsn outside that test
since it will never “already exist.”

• You may have CFLOCKs surround-
ing CFQUERYs, or CFLOCKs that
are moving the application.dsn to
a local variable. You wouldn’t want
to just rename the scope in those
instances.

Each of these cases requires a lit-
tle more care to resolve. I provide
further insights into solving these
problems on my Web site, www.sys-
temanage.com/cff/application_dsn
_bad.cfm.

I hope this article not only helps
prevent problems with applica-
tion.dsn, specifically, but also
increases your understanding of
request scope variables and applica-
tion.cfm processing in general.

ABOUT THE
AUTHOR
Charles Arehart is
an Allaire certified
trainer/developer and
CTO of SysteManage,
an Allaire partner. He
contributes to several
CF resources, provides
on-site coaching and
consultation, and is a
frequent speaker at
user groups throughout
the country.

CAREHART@SYSTEMANAGE.COM

www.ColdFusionJournal.com

Q&A

We have some more good questions to tackle this
month. We’ll look at Client variables, a pesky CFMAIL
problem, and ways to delete Session variables.

Q:Can you give me a brief
explanation of the “Client”
variable scope?

A:The Client variable scope is
very similar to the Session
scope in that you use it to

keep track of certain pieces of data for
individual users of your site (“clients”).
The biggest difference is that Client
variables are not stored in memory as
are Session variables.

Client variables are stored physical-
ly, either on your server in a database,
on your server in the registry, or back in
the client’s browser as cookies. Because
they’re stored physically, they don’t
expire as quickly or get lost if the server
is restarted (as Session variables do).
This allows you to keep information for
individual users and have it available to
them when they come back.

A good example would be prefer-
ence settings for each user. Rather than
have users log back in, or reset their
preferences every time they come back
to your site, you could store them in
client variables so that information is
available when the user returns.

Like Session variables, Client vari-
ables are stored and retrieved using two
cookies (CFID and CFTOKEN) as iden-
tification. Also like Session variables,
you can’t use Client variables unless you
enable CLIENTMANAGEMENT in your
CFAPPLICATION tag (see Listing 1).

Before using Client variables,
decide where you want to store them.
By default, CF stores all Client vari-
ables in the Registry on your server.
Never do this! Another choice is to
have CF send them back to the user as
cookies. This also isn’t great because
your user can delete or modify them,
plus they all get re-sent with every
page request (a performance issue for
people with modems!). The best solu-
tion is to store them in a database.

To have CF store Client variables in
a database, go to the Variables section
of the CF Administrator. Select the

data source you want to use for Client
variable storage (create a new data
source pointing to an empty database
before doing this step). Click “Add” to
add this data source to the list of avail-
able storage options. You’ll need to
answer three questions about the
data source and then click “Create.”

Now your data source will appear in
the list of available storage options. You
can set it as the default storage option
(recommended) or you can have each
application use a different storage data
source by specifying it in the CFAPPLI-
CATION tag as shown in Listing 1.

Q:Can I use the Client vari-
able scope to store com-
plex data types (like struc-

tures or query result sets)?

A:No and yes (isn’t that help-
ful?). As for the no part, the
Client scope can only be

used for storing simple values (strings
or numbers). However, there is a way
around this. You can take a complex
data type and turn it into a string
using WDDX. To demonstrate this
idea, Listing 2 shows three separate
CF pages. The full details of WDDX are
too great to expound in this column,
but the general concept is fairly easy.

First, you must enable client man-
agement in your Application.cfm page.
Note that CLIENTSTORAGE points to a
data source (don’t store Client vari-
ables in the Registry or as cookies!).
The next page, SetClientVar.cfm, runs
a query, turns that query into a WDDX
packet, and creates a Client variable
with the WDDX packet as its value. The
third page, ReadClientVar.cfm, takes
the value of the Client variable (which
is a WDDX packet), turns that packet
back into a query record set, and loops
over that query to display some results.

Q:After upgrading to CF 4.5,
when I send an e-mail with
CFMAIL (see Listing 3), the

formatting is not retained. Even
though I enter empty lines in between
two sentences, those empty lines are
removed when the mail is sent. Do you
know why this happens, and is there
any way to avoid it? I didn’t have this
problem before we upgraded to CF 4.5.

A:Yes! I hit my head against the
wall many times before
someone, I forget who,

helped out. Go to your CF Admin, and
check if you have this turned on:
Suppress White Space. That’s your cul-
prit. You’ll have to turn off this feature
and use CFSETTING, or CFSILENT,
instead. (This answer was provided by
Raymond Camden, principal Spectra
compliance engineer for Macromedia.)

Q:What’s the best way to get rid
of Session variables I creat-
ed? Currently, I’m just over-

writing them with an empty string (i.e.,
<CFSET Session.LoggedIn = ""),but they
still exist.Is there a better way to do this?

A:Yes, you can actually delete
variables out of the Session
scope using the Struct-

Delete() function. The Session scope
is actually a complex variable type
called a Structure (a single variable
capable of holding multiple values,
each identified by a unique name).
Therefore, when you “set” a Session
variable, you are actually just creating
a “key” or an entry in a structure
named “Session.” You can also delete
all the values stored in the Session
scope (or any structure) using the
StructClear() function. Listing 4 shows
some examples.

• • •
Please send your questions about

ColdFusion (CFML, CF Server, or CF
Studio) to AskCFDJ@sys-con.com.
Visit our archive site at www.Netsite-
Dynamics.com/AskCFDJ.

BY
BRUCE

VAN HORN

A source for your CF-related questions

ABOUT THE
AUTHOR
Bruce Van Horn
is president of

Netsite Dynamics,
LLC, an Allaire

certified instructor,
and a member of the

CFDJ International
Advisory Board.

CFDJ JULY50

BRUCE@NETSITEDYNAMICS.COM

Ask the Training Staff

www.ColdFusionJournal.com 51JULY CFDJ

Application.cfm

<CFAPPLICATION NAME="Test"

CLIENTMANAGEMENT="Yes"

SETCLIENTCOOKIES="Yes"

CLIENTSTORAGE="cfsnippets">

Application.cfm

<CFAPPLICATION NAME="Test"

CLIENTMANAGEMENT="Yes"

SETCLIENTCOOKIES="Yes"

CLIENTSTORAGE="cfsnippets">

SetClientVar.cfm

<CFQUERY NAME="GetCenters" DATASOURCE="cfsnippets">

SELECT * FROM Centers

</CFQUERY>

<CFWDDX ACTION="CFML2WDDX" INPUT="#GetCenters#"

OUTPUT="CentersWDDX">

<CFSET Client.Centers = Variables.CentersWDDX>

ReadClientVar.cfm

<CFWDDX ACTION="WDDX2CFML" INPUT="#Client.Centers#" OUT-

PUT="GetCenters2">

<CFOUTPUT QUERY="GetCenters2">

#GetCenters2.Name#, #GetCenters2.City#

</CFOUTPUT>

<CFMAIL...>

#DateFormat(Now(),'mm/dd/yy')#

Dear #GetClients.FirstName# #GetClients.LastName#:

Thank you for your recent...

Sincerely,

...

</CFMAIL>

<!--- to delete a single session variable --->

<CFSET tmp = StructDelete(Session,"LoggedIn")>

<!--- to delete all session variables --->

<CFSET tmp = StructClear(Session)>

Listing 4

Listing 3

Listing 2

Listing 1

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

CFEXTRAS
www.cfxtras.com

CFDYNAMICS
www.cfdynamics.com

www.ColdFusionJournal.comCFDJ JULY52

I
f you have used any content
management systems or any
of the popular Web-based
e-mail portals, you’ve probably
had an opportunity to use
something like eWebEditPro.

The idea behind this product is to make it easy for anyone to
write HTML-enhanced content right on a Web site.

When the user goes to type text, instead of a regular bland
HTML <TEXTAREA>, he or she is greeted by a wealth of menus
and buttons, similar to what you would find in Microsoft Word
2000. With clicks of the mouse, a user can choose fonts, insert
images and tables, and even format the document.

This adds power and flair to any sort of Web-based material
and takes the pressure off Web developers to add and change
Web content.

Improvements in 2.0
Ektron, the creators of eWebEditPro, has been making the prod-

uct for a few years, and frankly they’ve gotten it down. The newest
version of eWebEditPro is a real treat for ColdFusion developers,
and in the wake of a whole generation of new competitors, it brings
the battle of inline WYSIWIG HTML editors to a new level.

eWebEditPro was one of the first of its kind, so it’s no wonder
that Ektron has been able to come up with such useful and need-
ed innovations with eWebEditPro 2.0.

The list of improvements in this version is long:
1. A much better installation program: As a seasoned installer

of software, I’ve had my share of setup difficulties. Ektron has
dramatically improved the installation process by creating a
well-planned windows installer. It makes it much easier to get
everything going with ColdFusion.

2. A built-in FTP engine: Instead of a user choosing from a library
of prepared images, he or she can upload them to a specified
FTP location and they’ll be ready to go. This is a semiautomat-
ed process, so it should be no problem for inexperienced users
to grasp. Once uploaded, eWebEditPro 2.0 automatically gen-
erates the correct “src=” link inside of an image
tag to embed the image into the document.

3. Improved customization: As before, the Web
developer can set up which options and buttons
are available to the end user. This is done by
editing an XML file that gets installed by default
with eWebEditPro. It’s also possible to designate a cascading
stylesheet to be applied to content that’s created in the editor.
But it doesn’t stop there. You can enable the end user to set up
his or her own customizations. He or she can choose which
buttons to display on the toolbar and turn on and off one of
the five peel-off menu palettes.

Other Enriching Features
Other features really make it a gem. For instance, Ektron has

done a fantastic job with “cut and paste” from other Windows

programs. If the end user has a document that was created in
Microsoft Office (or some other compliant Windows program),
he or she can simply copy and paste it into eWebEditPro.

Once it’s pasted, the material is automatically scanned and
cleaned of the superfluous XML junk that Microsoft wants us to
think is necessary. And with the addition of the stylesheet over-
ride feature in 2.0, the Webmaster will have extra control over the
elements of the document – above and beyond just restricting
fonts and styles that are available in the toolbar.

Other perks also come with this product. For instance, it’s one
of the few in its class that supports Netscape. It also has a spell
checker, although this feature is relatively slow and depends on
having Office 97 or higher
installed for use.

It also comes with what is
often overlooked as a feature, a
well-written developer’s guide
and, equally important, a very
good end-user’s guide.

It bears mentioning that
eWebEditPro also works with
PHP, ASP, Perl, and JSP. It also
works with some of the more
popular content management
systems such as those from
Interwoven and Vignette. In
fact Macromedia thought it was so good that it now includes
eWebEditPro with every copy of Spectra.

Getting eWebEditPro 2.0
The base price for the software is $299 for 10 non-concurrent

users. This means that you designate 10 specific people as end
users. So to stick to the license, only those 10 people may use it.

If you opt for this license, it means you can’t put this baby on
your Internet Web site for the general public to use. If you have
this in mind, you’ll have to move up to the enterprise edition,
which is $5,999 and requires you to sign a contract with Ektron. If
your organization doesn’t need the unlimited license, but needs
more than the initial 10, it can add on the number of users it
needs by spending an additional $299 for every 10 users.

eWebEditPro 2.0 has a free 30-day trial that you can download
from its Web site. Visit www.Ektron.com for information about
eWebEditPro and other Ektron offerings.

Also Ektron has recently introduced eMPower Express, a
low-cost Web content management application that ships with a
fully integrated copy of eWebEditPro. Priced at $499, this is an
alternative for Web professionals who do not want to custom-
build an application.

About the Author
Eron Cohen has been working with ColdFusion since 1996. Currently he is a
freelance Web developer and trainer in Maryland.

Ektron Turns Up the Heat
FIRSTLOOK FIRSTLOOK FIRSTLOOK FIRSTLOOK

BY
ERON

COHEN

eWebEditPro eases writing HTML

FIGURE 1: The eWebEditPro 2.0 interface

eron_cohen@yahoo.com

www.ColdFusionJournal.com 53JULY CFDJ

www.ColdFusionJournal.com

Check out over 250
articles covering
topics such as...
Custom Tags, ColdFusion and Java,

Finding a Web Host, Conference

Reports, Server Stability, Site

Performance, SYS-CON Radio

Interviews, ColdFusion Tips and

Techniques, Using XML and XSLT

with ColdFusion, Fusebox, Building

E-Business Apps, Application Frameworks,

Error Handling, Wireless ColdFusion,

Product Reviews, Ask the Training Staff,

Unlocking Verity's Potential, Authentication,

Database Tips and Tricks, Monitoring, Smart

Objects, A Beginner's Guide to CF, Safe Scripting,

JavaScript, Load-Balanced Servers and more...

Questions? E-mail CFDJCD@SYS-CON.COM

only
$7999

easily
searchable
HTML FORMAT

ORDER ONLINE AND GET 10% DISCOUNT

GO TO WWW.JDJSTORE.COM TO ORDER

CFDJ JULY54

FREERegistration

Register for one...attend both

See them First at
XMLEdge2001

Fundamentally
Improving the

Speed, Cost &
Flexibility of

Business
Applications

Many New
XML Products

Will Hit the
Market
in Q3

of 2001

w w w . S Y S - C O N . c o m

’JOURNAL

Register
Online!

www.SYS-CON.com
or Call

201802-3069

™ ™ ™ ™ ™ ™ ™ ™ ™ ™

™

™

Santa Clara
Convention

Center
Sanda Clara, CA

SYS-CON
MEDIA

Owned & produced by

www.ColdFusionJournal.comCFDJ JULY56

Your Own MagazineYour Own Magazine
Do you need to differentiate yourself from your competitors?

Do you need to get closer to your customers and top prospects?

Could your customer database stand a bit of improvement?

Could your company brand and product brands benefit from a higher profile?

Would you like to work more closely with your third-party marketing partners?

Or, would you simply like to be a magazine publisher?

SYS-CON Custom Media is a new division of SYS-

CON, the world's leading publisher of Internet tech-

nology Web sites, print magazines, and journals.

SYS-CON was named America's fastest-growing,

privately held publishing company by Inc. 500 in 1999.

SYS-CON Custom Media can produce inserts, sup-

plements, or full-scale turnkey print magazines for your

company. Nothing beats your own print magazine for

sheer impact on your customers' desks... and a print

publication can also drive new prospects and business

to your Web site.

Talk to us!

We work closely with your marketing department to

produce targeted, top-notch editorial and design.We can

handle your distribution and database requirements, take

care of all production demands, and work with your mar-

keting partners to develop advertising revenue that can

subsidize your magazine.

So contact us today!So contact us today!
East of the Rockies,
Robyn Forma,
robyn@sys-con.com,
Tel: 201-802-3022

West of the Rockies,
Roger Strukhoff,
roger@sys-con.com,
Tel: 925-244-9109

CFDJ Online
Check in everyday for up-to-the-minute news, events,

and developments in the ColdFusion industry. Visit
www.sys-con.com/coldfusion and be the first to know
what’s happening.

ColdFusion Edge 2001, New York, September 23–26, 2001
Register now and save $600

The ColdFusion FastTrack at JavaEdge 2001 offers
ColdFusion developers, both beginner and advanced,
comprehensive technical sessions designed to prepare
them for the ColdFusion 4.5 Certified Developer Exam.
Topics for the conference include Web fundamentals,
application development, database concepts, client state
management, and troubleshooting. Sessions are designed
for beginner, intermediate, and advanced developers.

Go to www.sys-con.com/coldfusionedge for registra-
tion, conference schedule, keynotes, sponsors, travel infor-
mation, and a list of exhibitors.

Search ColdFusion Jobs
ColdFusion Developer’s Journal is proud to offer our

employment portal for IT professionals. Get direct access
to the best companies in the nation. Find out about the
“hidden job market” and how you can find it. As an IT pro-
fessional curious about the market, this is the site you’ve
been looking for.

Simply type in the keyword, job title, and location and get
instant results. You can search by salary, company, or industry.

Need more help? Our experts can assist you with retire-
ment planning, putting together a résumé, immigration
issues, and more.

JDJStore.com
You’re just clicks away from what’s new in the market.

There are new tools and programs to help you get where
you need to be. From the latest version of ColdFusion
Studio to Allaire’s Spectra, it’s easy to get them right on your
doorstep. They’re all here – just visit the CFDJ Web site.

Ben Forta’s ColdFusion Tip of the Day
Click here for ColdFusion tips, links, tags, and resources

from Allaire’s CF evangelist. A new tip every day!

Product Reviews
Considering a product upgrade? Want to know the ins

and outs of a new product before you purchase it? Make
sure you read our in-depth product reviews.

Our writers get behind the hype and give you the facts.
All products are tested by experts and leaders in the infor-
mation technology industry.

What’s Online
www.sys-con.com/c oldfusion

www.ColdFusionJournal.com 57JULY CFDJ

www.ColdFusionJournal.comCFDJ JULY58

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

Macromedia Releases
ColdFusion Server 5
(San Francisco, CA) –
Macromedia, Inc., announced
the availability of ColdFusion
Server 5, the latest version of
its Web application server.

ColdFusion Server 5
offers major enhancements
in development, administra-
tion, and performance. A
new integrated charting
engine, advanced full text

searching, and
new language
features
enable faster
development
of business

applications. Extensive new
administrative tools reduce
the time and costs for
deploying and managing
ColdFusion applications.
ColdFusion 5 also delivers a
significant performance
increase – running some

applications as much as
three times faster than
ColdFusion 4.5. A free 30-
day evaluation version is
available for download at
www.macromedia.com/soft-
ware/coldfusion/resources/

CFXGraphicsServer
Gets New Home
(Rockville, MD) – TeraTech has
acquired ownership of the
rights to CFXGraphicsServer,
the server-side graphing
and charting solutions for
ColdFusion.

CFXGraphicsServer incor-
porates over 30 graph types

and
styles
and

over 100 possible graph
attributes. It also includes a
full VTML “Visual Inference”
that speeds up development.
www.cfxgraphicsserver.com
www.teratech.com

76.5
YES

23.5
NO

ColdFusionJournal.com Live Poll

Will You
Upgrade to
ColdFusion

5.0?

The first of our live polls at
ColdFusionJournal.com.
Please check the site
regularly for new polls,
online content, and more!

Activedit v2.5 Now Available
(Utica, NY) – CFDev.com
introduces a new version of
Activedit with spell checker,
customizable tool bars, tab
view, and the addition of
special characters.

Activedit provides devel-
opers with the ability to
embed an HTML editor into
a Web page and save the

generated HTML into a
database, file, e-mail, and
more. It was awarded “Best
Custom Tag” in last year’s
ColdFusion Developers
Journal Readers’ Choice
Awards. A free trial of the
product is available at
www.cfdev.com.

ADVERTISER URL PH PG
ADVERTISER INDEX

ABLECOMMERCE WWW.ABLECOMMERCE.COM 888.801.1333 2-3

ACTIVEPDF WWW.ACTIVEPDF.COM 888.389.1653 11

CFDYNAMICS WWW.CFDYNAMICS.COM 800.422.7957 59

CFXHOSTING WWW.CFXHOSTING.COM 866.CFX-HOST 53

CFXTRAS WWW.CFXTRAS.COM 704.408.6186 59

C CODECHARGE WWW.CODECHARGE.COM 650.754.9810 21

COLDFUSION EDGE 2001 WWW.SYS-CON.COM/COLDFUSIONEDGE 201.802.3069 8-9

CONCEPTWARE AG WWW.CONCEPTWARE.COM/EYE 011.781.275.6171 17

CORDA TECHNOLOGIES WWW.CORDA.COM 801.805.9400 19

EMPIRIX WWW.EMPIRIX.COM 781.993.8500 4

EVOLUTIONB WWW.EVOLUTIONB.COM/WDJA 877.622.7551 63

HOSTCENTRIC WWW.HOSTCENTRIC.COM/CFDJ 888.932.9376 27

HOSTMYSITE.COM WWW.HOSTMYSITE.COM 877.215.HOST 47

INTERMEDIA.NET WWW.INTERMEDIA.NET 800.379.7729 64

JDJEDGE CONFERENCE & EXPO WWW.SYS-CON.COM/JDJEDGE 201.802.3069 54-55

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 39, 60

MACROMEDIA WWW.MACROMEDIA.COM/DOWNLOADS 888.939.2545 23

MACROMEDIA WWW.MACROMEDIA.COM/TRAINING 888.939.2545 29

MACROMEDIA WWW.VUE.COM/ALLAIRE 877.460.8679 31

PACIFIC ONLINE WWW.PACONLINE.NET 877.503.9870 41

PAPERTHIN WWW.PAPERTHIN.COM 800.940.3087 37

SYS-CON CUSTOM MEDIA WWW.SYS-CON.COM 925.244.9109 35

SYS-CON MEDIA REPRINTS WWW.SYS-CON.COM 201.802.3024 35

WEB SERVICES EDGE WWW.SYS-CON.COM/ 201.802.3004 51
CONFERENCE & EXPO WEBSERVICESEDGE

WEB SERVICES JOURNAL WWW.SYS-CON.COM/WEBSERVICES 201.802.3000 39

WEBSHERE DEVELOPER’S JOURNAL WWW.SYS-CON.COM/WEBSPHERE 800.513.7111 35

WIRELESS EDGE WWW.SYS-CON.COM/ 201.802.3069 49
CONFERENCE & EXPO WIRELESS

XMLEDGE CONFERENCE & EXPO WWW.SYS-CON.COM/XMLEDGE 201.802.3069 12-13

Next Month...
Here’s a sneak peek...
Optimal Development Environment:
Working Together in CF by Sarge Sargent

A Script for Teamwork: Distributed, team
development with ColdFusion by Hal Helms

Tracking Software Issues: Using the Web to
collaborate on tracking and resolving software issues
by David Keener

CFCONTENT with Images: From Web Bugs to
Banner Servers: Use CFCONTENT to secretly track
readers of your e-mail with ColdFusion
by Eron Cohen and Michael Smith

Don’t miss the August issue!

EVOLUTIONB
www.evolutionb.com/casestudies

www.ColdFusionJournal.comCFDJ JULY60

INTERMEDIA.NET
www.intermedia.net

